ISC-CNR, Institute for Complex Systems, Piazzale A. Moro 2, 00185 Rome, Italy.
Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Rome, Italy.
Phys Rev E. 2023 Jan;107(1-1):014127. doi: 10.1103/PhysRevE.107.014127.
In the recent literature, the g-subdiffusion equation involving Caputo fractional derivatives with respect to another function has been studied in relation to anomalous diffusions with a continuous transition between different subdiffusive regimes. In this paper we study the problem of g-fractional diffusion in a bounded domain with absorbing boundaries. We find the explicit solution for the initial boundary value problem, and we study the first-passage time distribution and the mean first-passage time (MFPT). The main outcome is the proof that with a particular choice of the function g it is possible to obtain a finite MFPT, differently from the anomalous diffusion described by a fractional heat equation involving the classical Caputo derivative.
在最近的文献中,研究了涉及到另一个函数的 Caputo 分数导数的 g-亚扩散方程与不同亚扩散区域之间的连续过渡的异常扩散之间的关系。在本文中,我们研究了具有吸收边界的有界域中的 g-分数扩散问题。我们找到了初始边值问题的显式解,并研究了首次通过时间分布和平均首次通过时间 (MFPT)。主要结果是证明,通过选择特定的函数 g,可以获得有限的 MFPT,这与涉及经典 Caputo 导数的分数热方程描述的异常扩散不同。