Kosztołowicz Tadeusz
Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland.
Phys Rev E. 2023 Jun;107(6-1):064103. doi: 10.1103/PhysRevE.107.064103.
We use a subdiffusion equation with fractional Caputo time derivative with respect to another function g (g-subdiffusion equation) to describe a smooth transition from ordinary subdiffusion to superdiffusion. Ordinary subdiffusion is described by the equation with the "ordinary" fractional Caputo time derivative, superdiffusion is described by the equation with a fractional Riesz-type spatial derivative. We find the function g for which the solution (Green's function, GF) to the g-subdiffusion equation takes the form of GF for ordinary subdiffusion in the limit of small time and GF for superdiffusion in the limit of long time. To solve the g-subdiffusion equation we use the g-Laplace transform method. It is shown that the scaling properties of the GF for g-subdiffusion and the GF for superdiffusion are the same in the long time limit. We conclude that for a sufficiently long time the g-subdiffusion equation describes superdiffusion well, despite a different stochastic interpretation of the processes. Then, paradoxically, a subdiffusion equation with a fractional time derivative describes superdiffusion. The superdiffusive effect is achieved here not by making anomalously long jumps by a diffusing particle, but by greatly increasing the particle jump frequency which is derived by means of the g-continuous-time random walk model. The g-subdiffusion equation is shown to be quite general, it can be used in modeling of processes in which a kind of diffusion change continuously over time. In addition, some methods used in modeling of ordinary subdiffusion processes, such as the derivation of local boundary conditions at a thin partially permeable membrane, can be used to model g-subdiffusion processes, even if this process is interpreted as superdiffusion.
我们使用一个关于另一个函数(g)的具有分数阶Caputo时间导数的次扩散方程((g -)次扩散方程)来描述从普通次扩散到超扩散的平滑过渡。普通次扩散由具有“普通”分数阶Caputo时间导数的方程描述,超扩散由具有分数阶Riesz型空间导数的方程描述。我们找到了这样一个函数(g),对于它,(g -)次扩散方程的解(格林函数,GF)在短时间极限下具有普通次扩散的格林函数形式,在长时间极限下具有超扩散的格林函数形式。为了求解(g -)次扩散方程,我们使用(g -)拉普拉斯变换方法。结果表明,在长时间极限下,(g -)次扩散的格林函数和超扩散的格林函数的标度性质是相同的。我们得出结论,尽管过程的随机解释不同,但对于足够长的时间,(g -)次扩散方程能很好地描述超扩散。然后,矛盾的是,一个具有分数阶时间导数的次扩散方程描述了超扩散。这里的超扩散效应不是通过扩散粒子进行异常长的跳跃来实现的,而是通过大幅增加粒子跳跃频率来实现的,这是通过(g -)连续时间随机游走模型推导出来的。(g -)次扩散方程被证明是相当通用 的,它可用于对扩散类型随时间连续变化的过程进行建模。此外,一些用于普通次扩散过程建模的方法,比如在薄的部分渗透膜处推导局部边界条件的方法,可用于对(g -)次扩散过程进行建模,即使该过程被解释为超扩散。