Department of Physics, PUC-Rio, Rua Marquês de São Vicente, 225, 22451-900, Rio de Janeiro, Brazil.
Centro Brasileiro de Pesquisas Físicas Rua Xavier Sigaud, 150, 22290-180, Rio de Janeiro, RJ Brazil.
Phys Rev E. 2023 Jan;107(1-1):014132. doi: 10.1103/PhysRevE.107.014132.
The Beck-Cohen superstatistics became an important theory in the scenario of complex systems because it generates distributions representing regions of a nonequilibrium system, characterized by different temperatures T≡β^{-1}, leading to a probability distribution f(β). In superstatistics, some classes have been most frequently considered for f(β), like χ^{2}, χ^{2} inverse, and log-normal ones. Herein we investigate the superstatistics resulting from a χ_{η}^{2} distribution through a modification of the usual χ^{2} by introducing a real index η (0<η≤1). In this way, one covers two common and relevant distributions as particular cases, proportional to the q-exponential (e_{q}^{-βx}=[1-(1-q)βx]^{1/1-q}) and the stretched exponential (e^{-(βx)^{η}}). Furthermore, an associated generalized entropic form is found. Since these two particular-case distributions have been frequently found in the literature, we expect that the present results should be applicable to a wide range of classes of complex systems.
贝克-科恩超统计成为复杂系统场景中的重要理论,因为它生成了代表非平衡系统区域的分布,其特征是具有不同的温度 T≡β^{-1},导致概率分布 f(β)。在超统计学中,f(β)最常考虑的有 χ^{2}、χ^{2}倒数和对数正态分布等几类。本文通过引入实指数 η(0<η≤1)对常用的 χ^{2}进行修改,研究了由 χ_{η}^{2}分布产生的超统计。通过这种方式,覆盖了两个常见且相关的分布作为特例,与 q-指数(e_{q}^{-βx}=[1-(1-q)βx]^{1/1-q})和扩展指数(e^{-(βx)^{η}})成比例。此外,还找到了一个相关的广义熵形式。由于这两个特例分布在文献中经常被发现,我们预计本结果应该适用于广泛的复杂系统类别。