Suppr超能文献

微正则系综与正则概率分布之间联系的简要综述。

Brief Review on the Connection between the Micro-Canonical Ensemble and the -Canonical Probability Distribution.

作者信息

Plastino Angel R, Plastino Angelo

机构信息

CeBio y Departamento de Ciencias Básicas, Universidad Nacional del Noroeste de la Província de Buenos Aires, UNNOBA, CONICET, Roque Saenz Peña 456, Junin 6000, Argentina.

Facultad de Ciencias Exactas, Departamento de Física, UNLP and CONICET-CCT-IFLP, La Plata 1900, Argentina.

出版信息

Entropy (Basel). 2023 Mar 30;25(4):591. doi: 10.3390/e25040591.

Abstract

Non-standard thermostatistical formalisms derived from generalizations of the Boltzmann-Gibbs entropy have attracted considerable attention recently. Among the various proposals, the one that has been most intensively studied, and most successfully applied to concrete problems in physics and other areas, is the one associated with the Sq non-additive entropies. The Sq-based thermostatistics exhibits a number of peculiar features that distinguish it from other generalizations of the Boltzmann-Gibbs theory. In particular, there is a close connection between the Sq-canonical distributions and the micro-canonical ensemble. The connection, first pointed out in 1994, has been subsequently explored by several researchers, who elaborated this facet of the Sq-thermo-statistics in a number of interesting directions. In the present work, we provide a brief review of some highlights within this line of inquiry, focusing on micro-canonical scenarios leading to Sq-canonical distributions. We consider works on the micro-canonical ensemble, including historical ones, where the Sq-canonical distributions, although present, were not identified as such, and also more resent works by researchers who explicitly investigated the Sq-micro-canonical connection.

摘要

源自玻尔兹曼 - 吉布斯熵推广的非标准热统计形式体系近来备受关注。在众多提议中,研究最为深入且最成功应用于物理及其他领域具体问题的是与(S_q)非加性熵相关的那一种。基于(S_q)的热统计展现出许多独特特征,使其有别于玻尔兹曼 - 吉布斯理论的其他推广形式。特别地,(S_q)正则分布与微正则系综之间存在紧密联系。这种联系于1994年首次被指出,随后有多位研究者对其进行了探索,他们在多个有趣的方向上阐述了(S_q)热统计的这一方面。在本工作中,我们简要回顾这一研究方向的一些要点,重点关注导致(S_q)正则分布的微正则情形。我们考虑了关于微正则系综的研究工作,包括早期那些虽存在(S_q)正则分布但未被明确识别的研究,以及近期那些明确探究(S_q)微正则联系的研究者的工作。

相似文献

2
Entropy Optimization, Generalized Logarithms, and Duality Relations.
Entropy (Basel). 2022 Nov 25;24(12):1723. doi: 10.3390/e24121723.
3
Equivalence between four versions of thermostatistics based on strongly pseudoadditive entropies.
Phys Rev E. 2019 Dec;100(6-1):062135. doi: 10.1103/PhysRevE.100.062135.
4
Meaning of temperature in different thermostatistical ensembles.
Philos Trans A Math Phys Eng Sci. 2016 Mar 28;374(2064):20150039. doi: 10.1098/rsta.2015.0039.
5
Family of additive entropy functions out of thermodynamic limit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016104. doi: 10.1103/PhysRevE.67.016104. Epub 2003 Jan 16.
6
Group entropies, correlation laws, and zeta functions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
7
Generalized entropy arising from a distribution of q indices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Apr;71(4 Pt 2):046144. doi: 10.1103/PhysRevE.71.046144. Epub 2005 Apr 29.
8
Senses along Which the Entropy Is Unique.
Entropy (Basel). 2023 May 1;25(5):743. doi: 10.3390/e25050743.
9
Group Entropies: From Phase Space Geometry to Entropy Functionals via Group Theory.
Entropy (Basel). 2018 Oct 19;20(10):804. doi: 10.3390/e20100804.
10
Beyond Boltzmann-Gibbs-Shannon in Physics and Elsewhere.
Entropy (Basel). 2019 Jul 15;21(7):696. doi: 10.3390/e21070696.

引用本文的文献

1
Senses along Which the Entropy Is Unique.
Entropy (Basel). 2023 May 1;25(5):743. doi: 10.3390/e25050743.

本文引用的文献

1
Tunnelling measured in a very slow ion-molecule reaction.
Nature. 2023 Mar;615(7952):425-429. doi: 10.1038/s41586-023-05727-z. Epub 2023 Mar 1.
2
Entropic form emergent from superstatistics.
Phys Rev E. 2023 Jan;107(1-1):014132. doi: 10.1103/PhysRevE.107.014132.
3
Entropy Optimization, Generalized Logarithms, and Duality Relations.
Entropy (Basel). 2022 Nov 25;24(12):1723. doi: 10.3390/e24121723.
4
Maximum entropy and constraints in composite systems.
Phys Rev E. 2022 Feb;105(2-1):024138. doi: 10.1103/PhysRevE.105.024138.
5
Beyond Boltzmann-Gibbs-Shannon in Physics and Elsewhere.
Entropy (Basel). 2019 Jul 15;21(7):696. doi: 10.3390/e21070696.
6
A Brief Review of Generalized Entropies.
Entropy (Basel). 2018 Oct 23;20(11):813. doi: 10.3390/e20110813.
7
Entropy formula of N-body system.
Sci Rep. 2020 Aug 20;10(1):14029. doi: 10.1038/s41598-020-71103-w.
8
Thermodynamics from first principles: Correlations and nonextensivity.
Phys Rev E. 2020 Jun;101(6-1):060101. doi: 10.1103/PhysRevE.101.060101.
9
Tsallis meets Boltzmann: q-index for a finite ideal gas and its thermodynamic limit.
Phys Rev E. 2020 Apr;101(4-1):040102. doi: 10.1103/PhysRevE.101.040102.
10
Maximum Entropy Principle in Statistical Inference: Case for Non-Shannonian Entropies.
Phys Rev Lett. 2019 Mar 29;122(12):120601. doi: 10.1103/PhysRevLett.122.120601.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验