Watkins Maxwell B, Wang Haoyue, Burnim Audrey, Ando Nozomi
Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
bioRxiv. 2023 Feb 12:2023.02.11.528079. doi: 10.1101/2023.02.11.528079.
Cobalamin-dependent methionine synthase (MetH) catalyzes the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate (CH -H folate) using the unique chemistry of its cofactor. In doing so, MetH links the cycling of -adenosylmethionine with the folate cycle in one-carbon metabolism. Extensive biochemical and structural studies on MetH have shown that this flexible, multi-domain enzyme adopts two major conformations to prevent a futile cycle of methionine production and consumption. However, as MetH is highly dynamic as well as both a photosensitive and oxygen-sensitive metalloenzyme, it poses special challenges for structural studies, and existing structures have necessarily come from a "divide and conquer" approach. In this study, we investigate MetH and a thermophilic homolog from using small-angle X-ray scattering (SAXS), single-particle cryo-electron microscopy (cryo-EM), and extensive analysis of the AlphaFold2 database to present the first structural description of MetH in its entirety. Using SAXS, we describe a common resting-state conformation shared by both active and inactive oxidation states of MetH and the roles of CH -H folate and flavodoxin in initiating turnover and reactivation. By combining SAXS with a 3.6-Å cryo-EM structure of the MetH, we show that the resting-state conformation consists of a stable arrangement of the catalytic domains that is linked to a highly mobile reactivation domain. Finally, by combining AlphaFold2-guided sequence analysis and our experimental findings, we propose a general model for functional switching in MetH.
钴胺素依赖性甲硫氨酸合酶(MetH)利用其辅因子独特的化学性质,催化同型半胱氨酸和5-甲基四氢叶酸(CH -H 叶酸)合成甲硫氨酸。在此过程中,MetH将S-腺苷甲硫氨酸的循环与一碳代谢中的叶酸循环联系起来。对MetH进行的广泛生化和结构研究表明,这种灵活的多结构域酶采用两种主要构象来防止甲硫氨酸产生和消耗的无效循环。然而,由于MetH具有高度动态性,并且是一种对光和氧敏感的金属酶,这给结构研究带来了特殊挑战,现有的结构必然来自于“分而治之”的方法。在本研究中,我们使用小角X射线散射(SAXS)、单颗粒冷冻电子显微镜(cryo-EM)以及对AlphaFold2数据库的广泛分析,对MetH及其嗜热同源物进行了研究,以首次完整呈现MetH的结构描述。通过SAXS,我们描述了MetH活性和非活性氧化态共有的一种常见静息态构象,以及CH -H 叶酸和黄素氧还蛋白在启动周转和再激活中的作用。通过将SAXS与MetH的3.6 Å冷冻电镜结构相结合,我们表明静息态构象由催化结构域的稳定排列组成,该排列与一个高度可移动的再激活结构域相连。最后,通过结合AlphaFold2指导的序列分析和我们的实验结果,我们提出了一个MetH功能转换的通用模型。