Suppr超能文献

拥抱不完美数据集:医学图像分割深度学习解决方案综述。

Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation.

机构信息

VoxelCloud, Inc., United States.

VoxelCloud, Inc., United States.

出版信息

Med Image Anal. 2020 Jul;63:101693. doi: 10.1016/j.media.2020.101693. Epub 2020 Apr 3.

Abstract

The medical imaging literature has witnessed remarkable progress in high-performing segmentation models based on convolutional neural networks. Despite the new performance highs, the recent advanced segmentation models still require large, representative, and high quality annotated datasets. However, rarely do we have a perfect training dataset, particularly in the field of medical imaging, where data and annotations are both expensive to acquire. Recently, a large body of research has studied the problem of medical image segmentation with imperfect datasets, tackling two major dataset limitations: scarce annotations where only limited annotated data is available for training, and weak annotations where the training data has only sparse annotations, noisy annotations, or image-level annotations. In this article, we provide a detailed review of the solutions above, summarizing both the technical novelties and empirical results. We further compare the benefits and requirements of the surveyed methodologies and provide our recommended solutions. We hope this survey article increases the community awareness of the techniques that are available to handle imperfect medical image segmentation datasets.

摘要

医学影像学文献见证了基于卷积神经网络的高性能分割模型的显著进展。尽管新的性能达到了新高,但最近的先进分割模型仍然需要大型、有代表性和高质量的标注数据集。然而,我们很少有完美的训练数据集,特别是在医学成像领域,数据和标注的获取都非常昂贵。最近,大量研究已经研究了使用不完美数据集进行医学图像分割的问题,解决了两个主要的数据集限制:注释稀少,只有有限的标注数据可用于训练;注释较弱,训练数据只有稀疏的标注、有噪声的标注或图像级别的标注。在本文中,我们详细回顾了上述解决方案,总结了技术创新和经验结果。我们进一步比较了调查方法的优缺点,并提供了我们推荐的解决方案。我们希望这篇综述文章能够提高社区对处理不完美医学图像分割数据集的技术的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验