Suppr超能文献

碳酸丙烯酯电解质条件下缺陷石墨烯上钠吸附的第一性原理研究

First-principles study of sodium adsorption on defective graphene under propylene carbonate electrolyte conditions.

作者信息

Ryu Chol, Rim Song-Bom, Kang Yong, Yu Chol-Jun

机构信息

Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea

出版信息

RSC Adv. 2023 Feb 14;13(9):5627-5633. doi: 10.1039/d2ra08168g.

Abstract

Hard carbon (HC) has been predominantly used as a typical anode material of sodium-ion batteries (SIBs) but its sodiation mechanism has been debated. In this work, we investigate the adsorption of Na atoms on defective graphene under propylene carbonate (PC) and water solvent as well as vacuum conditions to clarify the sodiation mechanism of HC. Within the joint density functional theory framework, we use the nonlinear polarizable continuum model for PC and the charge-asymmetric nonlocally-determined local electric solvation model for water. Our calculations reveal that the centre of each point defect such as mono-vacancy (MV), di-vacancy (DV) and Stone-Wales is a preferable adsorption site and the electrolyte enhances the Na adsorption through implicit interaction. Furthermore, we calculate the formation energies of multiple Na atom arrangements on the defective graphene and estimate the electrode potential Na/Na, verifying that the multiple Na adsorption on the MV and DV defective graphene under the PC electrolyte conditions is related to the slope region of the discharge curve in HC. This reveals new prospects for optimizing anodes and electrolytes for high performance SIBs.

摘要

硬碳(HC)一直主要用作钠离子电池(SIB)的典型负极材料,但其 sodiation 机制一直存在争议。在这项工作中,我们研究了在碳酸丙烯酯(PC)和水溶剂以及真空条件下,Na 原子在缺陷石墨烯上的吸附情况,以阐明 HC 的 sodiation 机制。在联合密度泛函理论框架内,我们对 PC 使用非线性极化连续介质模型,对水使用电荷不对称非局部确定的局部电溶剂化模型。我们的计算表明,每个点缺陷的中心,如单空位(MV)、双空位(DV)和斯通 - 威尔士缺陷,都是优先的吸附位点,并且电解质通过隐式相互作用增强了 Na 的吸附。此外,我们计算了缺陷石墨烯上多个 Na 原子排列的形成能,并估计了电极电位 Na/Na,验证了在 PC 电解质条件下,MV 和 DV 缺陷石墨烯上的多个 Na 吸附与 HC 放电曲线的斜率区域有关。这为优化高性能 SIB 的负极和电解质揭示了新的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0167/9926951/38c44d53f9a0/d2ra08168g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验