Institute of Physical Chemistry, Justus-Liebig University Giessen, 35392 Giessen, Germany.
Institute of Technical Chemistry and Environmental Chemistry, CEEC Jena, Friedrich-Schiller University Jena, 07743 Jena, Germany.
Phys Chem Chem Phys. 2019 Sep 21;21(35):19378-19390. doi: 10.1039/c9cp03453f. Epub 2019 Aug 28.
The thermodynamically unstable binary graphite intercalation compounds (GICs) with Na remain a main drawback preventing the implementation of Na-ion batteries in the market. In order to shed some light on the origin of Na-GICs instability, we investigate the structure and the energetics of different alkali metal (AM)-GICs by means of density functional theory (DFT) calculations with dispersion correction. We carefully consider different stages of AM-GICs for various AM concentrations and compare the results for Li, Na and K intercalation into graphite. In order to understand the compound stability, we investigated the interplay between the binding energy and the structural deformation due to the presence of AMs in graphite. Whereas the structural deformation energy linearly increases with the size of alkali metal ions, the binding energy passes through a maximum for Na-GIC. The analysis of different contributions to the binding energy allows to conclude that the alkali metal trend is broken for Li-GICs, not for Na-GICs. The high capacity for Li-GIC is a result of the small ion size of lithium. In addition to the mainly ionic binding nature, it allows to form a covalent contribution between lithium and graphite by orbital overlapping. In contrast, Na-GIC and K-GIC exhibit very small or hardly any covalent contribution. Furthermore, due to the small size of lithium the structural deformation energy cost also is small and allows van der Waals interactions between the graphite layers, which further enhance the stability of Li-GICs. For Na- and K-GICs, a higher energy amount for a structural deformation is needed and the stabilizing van der Waals interaction of graphite layers is weaker or hardly present.
热力学不稳定的二元石墨插层化合物 (GICs) 与 Na 仍然是阻止钠离子电池在市场上实现的主要障碍。为了阐明 Na-GICs 不稳定性的起源,我们通过使用带有色散校正的密度泛函理论 (DFT) 计算来研究不同碱金属 (AM)-GICs 的结构和能量。我们仔细考虑了不同 AM 浓度下 AM-GICs 的不同阶段,并比较了 Li、Na 和 K 嵌入石墨的结果。为了理解化合物的稳定性,我们研究了由于 AMs 在石墨中的存在而导致的结合能与结构变形之间的相互作用。虽然结构变形能随碱金属离子的尺寸线性增加,但 Na-GIC 的结合能则通过最大值。对结合能的不同贡献的分析可以得出结论,对于 Li-GICs,打破了碱金属的趋势,而对于 Na-GICs 则没有。Li-GIC 的高容量是由于锂离子的尺寸较小。除了主要的离子结合性质外,它还允许锂和石墨之间通过轨道重叠形成共价贡献。相比之下,Na-GIC 和 K-GIC 则表现出非常小或几乎没有共价贡献。此外,由于锂离子的尺寸较小,结构变形的能量成本也较小,并且允许石墨层之间的范德华相互作用,这进一步增强了 Li-GICs 的稳定性。对于 Na-和 K-GICs,需要更大的能量来进行结构变形,并且石墨层的稳定范德华相互作用较弱或几乎不存在。