Jiménez-Mesa Carmen, Arco Juan E, Valentí-Soler Meritxell, Frades-Payo Belén, Zea-Sevilla María A, Ortiz Andrés, Ávila-Villanueva Marina, Castillo-Barnes Diego, Ramírez Javier, Del Ser-Quijano Teodoro, Carnero-Pardo Cristóbal, Górriz Juan M
Data Science and Computational Intelligence (DASCI) Institute, Spain.
Department of Signal Theory, Networking and Communications, University of Granada, Granada 18010, Spain.
Int J Neural Syst. 2023 Apr;33(4):2350015. doi: 10.1142/S0129065723500156. Epub 2023 Feb 16.
The prevalence of dementia is currently increasing worldwide. This syndrome produces a deterioration in cognitive function that cannot be reverted. However, an early diagnosis can be crucial for slowing its progress. The Clock Drawing Test (CDT) is a widely used paper-and-pencil test for cognitive assessment in which an individual has to manually draw a clock on a paper. There are a lot of scoring systems for this test and most of them depend on the subjective assessment of the expert. This study proposes a computer-aided diagnosis (CAD) system based on artificial intelligence (AI) methods to analyze the CDT and obtain an automatic diagnosis of cognitive impairment (CI). This system employs a preprocessing pipeline in which the clock is detected, centered and binarized to decrease the computational burden. Then, the resulting image is fed into a Convolutional Neural Network (CNN) to identify the informative patterns within the CDT drawings that are relevant for the assessment of the patient's cognitive status. Performance is evaluated in a real context where patients with CI and controls have been classified by clinical experts in a balanced sample size of [Formula: see text] drawings. The proposed method provides an accuracy of [Formula: see text] in the binary case-control classification task, with an AUC of [Formula: see text]. These results are indeed relevant considering the use of the classic version of the CDT. The large size of the sample suggests that the method proposed has a high reliability to be used in clinical contexts and demonstrates the suitability of CAD systems in the CDT assessment process. Explainable artificial intelligence (XAI) methods are applied to identify the most relevant regions during classification. Finding these patterns is extremely helpful to understand the brain damage caused by CI. A validation method using resubstitution with upper bound correction in a machine learning approach is also discussed.
目前,痴呆症在全球范围内的患病率正在上升。这种综合征会导致认知功能恶化且无法逆转。然而,早期诊断对于减缓其进展可能至关重要。画钟测试(CDT)是一种广泛使用的纸笔测试,用于认知评估,即让个体在纸上手动画一个时钟。该测试有许多评分系统,其中大多数依赖专家的主观评估。本研究提出了一种基于人工智能(AI)方法的计算机辅助诊断(CAD)系统,用于分析画钟测试并获得认知障碍(CI)的自动诊断。该系统采用一个预处理流程,在其中检测时钟、将其居中并进行二值化处理以减轻计算负担。然后,将所得图像输入卷积神经网络(CNN),以识别画钟测试图中与评估患者认知状态相关的信息模式。在一个实际场景中对性能进行评估,在该场景中,临床专家已对患有认知障碍和对照的患者进行分类,样本大小均衡,共有[公式:见原文]幅图。所提出的方法在二元病例对照分类任务中提供了[公式:见原文]的准确率,曲线下面积(AUC)为[公式:见原文]。考虑到使用经典版本的画钟测试,这些结果确实具有相关性。样本量较大表明所提出的方法在临床环境中使用具有很高的可靠性,并证明了CAD系统在画钟测试评估过程中的适用性。可解释人工智能(XAI)方法被应用于识别分类过程中最相关的区域。找到这些模式对于理解由认知障碍引起的脑损伤非常有帮助。还讨论了一种在机器学习方法中使用带上限校正的重新代入的验证方法。