Suppr超能文献

基于图片的时钟绘画测试的人工智能辅助痴呆检测方法。

An Artificial Intelligence-Assisted Method for Dementia Detection Using Images from the Clock Drawing Test.

机构信息

Department of Electrical & Computer Engineering, Division of Systems Engineering, and Department of Biomedical Engineering, Boston University, Boston, MA, USA.

Framingham Heart Study, Boston University, Boston, MA, USA.

出版信息

J Alzheimers Dis. 2021;83(2):581-589. doi: 10.3233/JAD-210299.

Abstract

BACKGROUND

Widespread dementia detection could increase clinical trial candidates and enable appropriate interventions. Since the Clock Drawing Test (CDT) can be potentially used for diagnosing dementia-related disorders, it can be leveraged to develop a computer-aided screening tool.

OBJECTIVE

To evaluate if a machine learning model that uses images from the CDT can predict mild cognitive impairment or dementia.

METHODS

Images of an analog clock drawn by 3,263 cognitively intact and 160 impaired subjects were collected during in-person dementia evaluations by the Framingham Heart Study. We processed the CDT images, participant's age, and education level using a deep learning algorithm to predict dementia status.

RESULTS

When only the CDT images were used, the deep learning model predicted dementia status with an area under the receiver operating characteristic curve (AUC) of 81.3% ± 4.3%. A composite logistic regression model using age, level of education, and the predictions from the CDT-only model, yielded an average AUC and average F1 score of 91.9% ±1.1% and 94.6% ±0.4%, respectively.

CONCLUSION

Our modeling framework establishes a proof-of-principle that deep learning can be applied on images derived from the CDT to predict dementia status. When fully validated, this approach can offer a cost-effective and easily deployable mechanism for detecting cognitive impairment.

摘要

背景

广泛的痴呆症检测可以增加临床试验的候选者,并能够进行适当的干预。由于画钟测验(CDT)可用于诊断与痴呆相关的疾病,因此可以利用它来开发计算机辅助筛查工具。

目的

评估使用 CDT 图像的机器学习模型是否可以预测轻度认知障碍或痴呆。

方法

在弗雷明汉心脏研究的现场痴呆评估中,收集了 3263 名认知正常和 160 名受损受试者的模拟时钟 CDT 图像。我们使用深度学习算法处理 CDT 图像、参与者的年龄和教育水平,以预测痴呆状态。

结果

仅使用 CDT 图像时,深度学习模型预测痴呆状态的受试者工作特征曲线下面积(AUC)为 81.3%±4.3%。使用年龄、教育程度和 CDT 单一模型预测值的综合逻辑回归模型,平均 AUC 和平均 F1 分数分别为 91.9%±1.1%和 94.6%±0.4%。

结论

我们的建模框架证明了深度学习可以应用于 CDT 得出的图像来预测痴呆状态。经过充分验证后,这种方法可以提供一种具有成本效益且易于部署的机制,用于检测认知障碍。

相似文献

4
The Times They Are a-Changin': Clock Drawing and Prediction of Dementia.时代在变:画钟测试与痴呆症预测
J Geriatr Psychiatry Neurol. 2015 Jun;28(2):145-55. doi: 10.1177/0891988714554709. Epub 2014 Oct 14.
10
A comparison of six clock-drawing test scoring methods in a nursing home.六种在养老院使用的画钟测验评分方法的比较。
Aging Clin Exp Res. 2018 Jul;30(7):775-781. doi: 10.1007/s40520-017-0843-3. Epub 2017 Oct 11.

引用本文的文献

8
Modeling Users' Cognitive Performance Using Digital Pen Features.利用数字笔功能对用户的认知表现进行建模。
Front Artif Intell. 2022 May 3;5:787179. doi: 10.3389/frai.2022.787179. eCollection 2022.

本文引用的文献

6
The neuropathological diagnosis of Alzheimer's disease.阿尔茨海默病的神经病理学诊断。
Mol Neurodegener. 2019 Aug 2;14(1):32. doi: 10.1186/s13024-019-0333-5.
8
Neural transfer learning for assigning diagnosis codes to EMRs.将诊断编码分配给电子病历的神经迁移学习。
Artif Intell Med. 2019 May;96:116-122. doi: 10.1016/j.artmed.2019.04.002. Epub 2019 Apr 12.
9
70-year legacy of the Framingham Heart Study.弗雷明汉心脏研究 70 年的历程。
Nat Rev Cardiol. 2019 Nov;16(11):687-698. doi: 10.1038/s41569-019-0202-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验