Suppr超能文献

利用人工智能术前磁共振成像预测低位直肠癌的预后。

Predicting the prognosis of lower rectal cancer using preoperative magnetic resonance imaging with artificial intelligence.

机构信息

Department of Digestive and Pediatric Surgery, Tokyo Medical University, Tokyo Ika Daigaku, Shinjuku-Ku, Tokyo, Japan.

出版信息

Tech Coloproctol. 2023 Aug;27(8):631-638. doi: 10.1007/s10151-023-02766-6. Epub 2023 Feb 17.

Abstract

BACKGROUND

There are various preoperative treatments that are useful for controlling local or distant metastases in lower rectal cancer. For planning perioperative management, preoperative stratification of optimal treatment strategies for each case is required. However, a stratification method has not yet been established. Therefore, we attempted to predict the prognosis of lower rectal cancer using preoperative magnetic resonance imaging (MRI) with artificial intelligence (AI).

METHODS

This study included 54 patients [male:female ratio was 37:17, median age 70 years (range 49-107 years)] with lower rectal cancer who could be curatively resected without preoperative treatment at Tokyo Medical University Hospital from January 2010 to February 2017. In total, 878 preoperative T2 MRIs were analyzed. The primary endpoint was the presence or absence of recurrence, which was evaluated using the area under the receiver operating characteristic curve. The secondary endpoint was recurrence-free survival (RFS), which was evaluated using the Kaplan-Meier curve of the predicted recurrence (AI stage 1) and predicted recurrence-free (AI stage 0) groups.

RESULTS

For recurrence prediction, the area under the curve (AUC) values for learning and test cases were 0.748 and 0.757, respectively. For prediction of recurrence in each case, the AUC values were 0.740 and 0.875, respectively. The 5-year RFS rates, according to the postoperative pathologic stage for all patients, were 100%, 64%, and 50% for stages 1, 2, and 3, respectively (p = 0.107). The 5-year RFS rates for AI stages 0 and 1 were 97% and 10%, respectively (p < 0.001 significant difference).

CONCLUSIONS

We developed a prognostic model using AI and preoperative MRI images of patients with lower rectal cancer who had not undergone preoperative treatment, and the model could be useful in comparison with pathological classification.

摘要

背景

针对低位直肠癌的局部或远处转移,有各种术前治疗方法。为了规划围手术期管理,需要对每个病例的最佳治疗策略进行术前分层。然而,目前还没有分层方法。因此,我们尝试使用人工智能(AI)对低位直肠癌的术前磁共振成像(MRI)进行预测。

方法

本研究纳入了 2010 年 1 月至 2017 年 2 月在东京医科大学医院接受无术前治疗的低位直肠癌根治性切除手术的 54 例患者(男:女比例为 37:17,中位年龄 70 岁(范围 49-107 岁))。共分析了 878 例术前 T2 MRI。主要终点为复发的存在或不存在,通过接受者操作特征曲线下面积进行评估。次要终点为无复发生存率(RFS),通过预测复发(AI 分期 1 组)和预测无复发(AI 分期 0 组)组的 Kaplan-Meier 曲线进行评估。

结果

对于复发预测,学习和测试病例的曲线下面积(AUC)值分别为 0.748 和 0.757。对于每个病例的复发预测,AUC 值分别为 0.740 和 0.875。所有患者根据术后病理分期的 5 年 RFS 率分别为 100%、64%和 50%,分期分别为 1、2 和 3(p=0.107)。AI 分期 0 和 1 的 5 年 RFS 率分别为 97%和 10%(p<0.001 差异显著)。

结论

我们开发了一种使用 AI 和未经术前治疗的低位直肠癌患者的术前 MRI 图像的预后模型,该模型与病理分类相比可能具有一定的应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验