Institute for Theoretical Physics, Leipzig University, Postfach 100920, 04009 Leipzig, Germany.
Donghai Laboratory, 316021 Zhoushan, China.
Phys Rev Lett. 2023 Feb 3;130(5):058204. doi: 10.1103/PhysRevLett.130.058204.
Predicting transport rates of windblown sand is a central problem in aeolian research, with implications for climate, environmental, and planetary sciences. Though studied since the 1930s, the underlying many-body dynamics is still incompletely understood, as underscored by the recent empirical discovery of an unexpected third-root scaling in the particle-fluid density ratio. Here, by means of grain-scale simulations and analytical modeling, we elucidate how a complex coupling between grain-bed collisions and granular creep within the sand bed yields a dilatancy-enhanced bed erodibility. Our minimal saltation model robustly predicts both the observed scaling and a new undersaturated steady transport state that we confirm by simulations for rarefied atmospheres.
预测风沙的输运率是风沙研究的核心问题,对气候、环境和行星科学都有影响。尽管自 20 世纪 30 年代以来就一直在研究这个问题,但由于最近在颗粒-流体密度比中发现了一种意想不到的三分之三次方标度,这表明多体动力学的基础仍未完全被理解。在这里,我们通过颗粒尺度的模拟和分析模型,阐明了沙床中颗粒-床碰撞和颗粒内流之间的复杂耦合如何导致了膨胀增强的床侵蚀性。我们的最小跳跃模型稳健地预测了观测到的标度以及我们通过模拟在稀薄大气中确认的新的不饱和稳定输运状态。