Suppr超能文献

规划狼-牲畜共存:景观背景预测农业景观中的牲畜掠食风险。

Planning for wolf-livestock coexistence: landscape context predicts livestock depredation risk in agricultural landscapes.

机构信息

Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, D 15374 Müncheberg, Germany.

Technical University of Applied Sciences Wildau, Hochschulring 1, Haus 16, D 15745 Wildau, Germany.

出版信息

Animal. 2023 Mar;17(3):100719. doi: 10.1016/j.animal.2023.100719. Epub 2023 Jan 25.

Abstract

Extensive pastoral livestock systems in Central Europe provide multiple ecosystem services and support biodiversity in agricultural landscapes but their viability is challenged by livestock depredation (LD) associated with the recovery of wolf populations. Variation in the spatial distribution of LD depends on a suite of factors, most of which are unavailable at the appropriate scales. To assess if LD patterns can be predicted sufficiently with land use data alone at the scale of one federal state in Germany, we employed a machine-learning-supported resource selection approach. The model used LD monitoring data, and publicly available land use data to describe the landscape configuration at LD and control sites (resolution 4 km * 4 km). We used SHapley Additive exPlanations to assess the importance and effects of landscape configuration and cross-validation to evaluate the model performance. Our model predicted the spatial distribution of LD events with a mean accuracy of 74%. The most influential land use features included grassland, farmland and forest. The risk of livestock depredation was high if these three landscape features co-occurred with a specific proportion. A high share of grassland, combined with a moderate proportion of forest and farmland, increased LD risk. We then used the model to predict the LD risk in five regions; the resulting risk maps showed high congruence with observed LD events. While of correlative nature and lacking specific information on wolf and livestock distribution and husbandry practices, our pragmatic modelling approach can guide spatial prioritisation of damage prevention or mitigation practices to improve livestock-wolf coexistence in agricultural landscapes.

摘要

中欧广泛的畜牧业系统提供了多种生态系统服务,并支持农业景观中的生物多样性,但由于狼群的恢复,与家畜捕食(LD)相关的生存能力受到了挑战。LD 的空间分布变化取决于一系列因素,其中大多数因素在适当的尺度上无法获得。为了评估在德国一个联邦州的规模上,仅使用土地利用数据是否可以充分预测 LD 模式,我们采用了机器学习支持的资源选择方法。该模型使用 LD 监测数据和公开的土地利用数据来描述 LD 和对照点的景观配置(分辨率为 4km×4km)。我们使用 Shapley Additive exPlanations 来评估景观配置的重要性和影响,并进行交叉验证以评估模型性能。我们的模型以 74%的平均准确率预测了 LD 事件的空间分布。最具影响力的土地利用特征包括草地、农田和森林。如果这三种景观特征以特定比例共同存在,那么家畜捕食的风险就很高。草地比例高,加上森林和农田比例适中,会增加 LD 风险。然后,我们使用该模型预测了五个地区的 LD 风险;由此产生的风险图与观察到的 LD 事件高度一致。虽然我们的实用建模方法具有相关性,并且缺乏有关狼和家畜分布以及畜牧业实践的具体信息,但它可以指导损害预防或缓解措施的空间优先排序,以改善农业景观中的家畜与狼共存。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验