Suppr超能文献

腺苷酸激酶催化步骤与缓慢开放动力学之间关联的机制基础。

Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase.

机构信息

Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States.

High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden.

出版信息

J Chem Inf Model. 2023 Mar 13;63(5):1556-1569. doi: 10.1021/acs.jcim.2c01629. Epub 2023 Feb 21.

Abstract

adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme's conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme's function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK's conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme's conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme's active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.

摘要

腺苷酸激酶(AdK)是一种小型单体酶,它通过协调催化步骤与酶的构象动力学,来优化磷酸转移反应和随后产物的释放。基于对七种单点突变 AdK 变体(K13Q、R36A、R88A、R123A、R156K、R167A 和 D158A)低催化活性的实验测量,我们利用经典力学模拟来探测与产物释放相关的突变体动力学,并利用量子力学和分子力学计算来计算催化事件的自由能势垒。我们的目标是在这两种活性之间建立一种机制联系。我们对 AdK 变体自由能势垒的计算与实验结果一致,构象动力学一致地表现出增强的酶开口倾向。这表明野生型 AdK 中的催化残基在该酶的功能中具有双重作用——一种作用是降低磷酸转移反应的能量势垒,另一种作用是延迟酶开口,使其保持在催化活性的关闭构象足够长的时间,以实现随后的化学步骤。我们的研究还发现,虽然每个催化残基单独有助于促进催化,但 R36、R123、R156、R167 和 D158 组织在一个紧密协调的相互作用网络中,共同调节 AdK 的构象转变。与产物释放是限速步骤的现有观点不同,我们的结果表明化学步骤和酶构象动力学之间存在一种机制联系,作为催化过程的瓶颈。我们的结果还表明,酶的活性位点已经进化到优化化学反应步骤,同时减缓酶的整体开口动力学。

相似文献

1
Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase.
J Chem Inf Model. 2023 Mar 13;63(5):1556-1569. doi: 10.1021/acs.jcim.2c01629. Epub 2023 Feb 21.
3
Illuminating the mechanistic roles of enzyme conformational dynamics.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18055-60. doi: 10.1073/pnas.0708600104. Epub 2007 Nov 7.
4
Fine structure of conformational ensembles in adenylate kinase.
Proteins. 2018 Mar;86(3):332-343. doi: 10.1002/prot.25443. Epub 2017 Dec 26.
5
Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions.
Biochemistry. 2021 Jul 20;60(28):2246-2258. doi: 10.1021/acs.biochem.1c00221. Epub 2021 Jul 12.
6
Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase.
J Phys Chem B. 2022 Oct 20;126(41):8188-8201. doi: 10.1021/acs.jpcb.2c05497. Epub 2022 Oct 12.
7
Modulation of the Conformational Dynamics of Apo-Adenylate Kinase through a π-Cation Interaction.
J Phys Chem B. 2017 Jun 15;121(23):5699-5708. doi: 10.1021/acs.jpcb.7b01736. Epub 2017 Jun 6.
8
Mapping the Dynamics Landscape of Conformational Transitions in Enzyme: The Adenylate Kinase Case.
Biophys J. 2015 Aug 4;109(3):647-60. doi: 10.1016/j.bpj.2015.06.059.
10
Optical Control of Cellular ATP Levels with a Photocaged Adenylate Kinase.
Chembiochem. 2020 Jul 1;21(13):1832-1836. doi: 10.1002/cbic.201900757. Epub 2020 Apr 2.

引用本文的文献

1
Wide transition-state ensemble as key component for enzyme catalysis.
Elife. 2025 Feb 18;12:RP93099. doi: 10.7554/eLife.93099.
2
Interplay between conformational dynamics and substrate binding regulates enzymatic activity: a single-molecule FRET study.
Chem Sci. 2025 Jan 22;16(7):3066-3077. doi: 10.1039/d4sc06819j. eCollection 2025 Feb 12.
3
Allostery can convert binding free energies into concerted domain motions in enzymes.
Nat Commun. 2024 Nov 22;15(1):10109. doi: 10.1038/s41467-024-54421-9.
6
Magnesium induced structural reorganization in the active site of adenylate kinase.
Sci Adv. 2024 Aug 9;10(32):eado5504. doi: 10.1126/sciadv.ado5504.
7
Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development.
ACS Omega. 2024 Feb 8;9(7):7393-7412. doi: 10.1021/acsomega.3c09084. eCollection 2024 Feb 20.
8
Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release.
J Chem Inf Model. 2024 Jan 8;64(1):150-163. doi: 10.1021/acs.jcim.3c01618. Epub 2023 Dec 20.
9
Insights into Enzymatic Catalysis from Binding and Hydrolysis of Diadenosine Tetraphosphate by . Adenylate Kinase.
Biochemistry. 2023 Aug 1;62(15):2238-2243. doi: 10.1021/acs.biochem.3c00189. Epub 2023 Jul 7.
10
Allosteric communication between ligand binding domains modulates substrate inhibition in adenylate kinase.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2219855120. doi: 10.1073/pnas.2219855120. Epub 2023 Apr 24.

本文引用的文献

1
Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase.
J Phys Chem B. 2022 Oct 20;126(41):8188-8201. doi: 10.1021/acs.jpcb.2c05497. Epub 2022 Oct 12.
2
Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions.
Biochemistry. 2021 Jul 20;60(28):2246-2258. doi: 10.1021/acs.biochem.1c00221. Epub 2021 Jul 12.
3
Nucleation of an Activating Conformational Change by a Cation-π Interaction.
Biochemistry. 2019 Aug 13;58(32):3408-3412. doi: 10.1021/acs.biochem.9b00538. Epub 2019 Jul 29.
4
Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3243-3248. doi: 10.1073/pnas.1720448115. Epub 2018 Mar 12.
5
Multiple Pathways and Time Scales for Conformational Transitions in apo-Adenylate Kinase.
J Chem Theory Comput. 2018 Mar 13;14(3):1716-1726. doi: 10.1021/acs.jctc.7b01064. Epub 2018 Feb 12.
6
Tracking the Catalytic Cycle of Adenylate Kinase by Ultraviolet Photodissociation Mass Spectrometry.
Anal Chem. 2018 Jan 2;90(1):839-846. doi: 10.1021/acs.analchem.7b03591. Epub 2017 Dec 15.
8
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics.
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659. doi: 10.1371/journal.pcbi.1005659. eCollection 2017 Jul.
10
Structural basis for ligand binding to an enzyme by a conformational selection pathway.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6298-6303. doi: 10.1073/pnas.1700919114. Epub 2017 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验