Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
Nat Commun. 2024 Nov 22;15(1):10109. doi: 10.1038/s41467-024-54421-9.
Enzymatic mechanisms are typically inferred from structural data. However, understanding enzymes require unravelling the intricate dynamic interplay between dynamics, conformational substates, and multiple protein structures. Here, we use single-molecule nanopore analysis to investigate the catalytic conformational changes of adenylate kinase (AK), an enzyme that catalyzes the interconversion of various adenosine phosphates (ATP, ADP, and AMP). Kinetic analysis validated by hidden Markov models unravels the details of domain motions during catalysis. Our findings reveal that allosteric interactions between ligands and cofactor enable converting binding energies into directional conformational changes of the two catalytic domains of AK. These coordinated motions emerged to control the exact sequence of ligand binding and the affinity for the three different substrates, thereby guiding the reactants along the reaction coordinates. Interestingly, we find that about 10% of enzymes show altered allosteric regulation and ligand affinities, indicating that a subset of enzymes folds in alternative catalytically active forms. Since molecules or proteins might be able to selectively stabilize one of the folds, this observation suggests an evolutionary path for allostery in enzymes. In AK, this complex catalytic framework has likely emerged to prevent futile ATP/ADP hydrolysis and to regulate the enzyme for different energy needs of the cell.
酶的作用机制通常可以从结构数据中推断出来。然而,要理解酶,就需要揭示动力学、构象亚稳态和多种蛋白质结构之间复杂的动态相互作用。在这里,我们使用单分子纳米孔分析来研究腺嘌呤激酶(AK)的催化构象变化,该酶催化各种腺苷磷酸(ATP、ADP 和 AMP)的相互转化。通过隐马尔可夫模型进行的动力学分析揭示了催化过程中结构域运动的细节。我们的研究结果表明,配体和辅助因子之间的变构相互作用使结合能转化为 AK 的两个催化结构域的定向构象变化。这些协调运动的出现控制了配体结合的精确顺序和对三种不同底物的亲和力,从而沿着反应坐标引导反应物。有趣的是,我们发现约 10%的酶显示出改变的变构调节和配体亲和力,这表明一部分酶以替代的催化活性形式折叠。由于分子或蛋白质可能能够选择性地稳定一种折叠,这一观察结果表明酶的变构作用具有进化途径。在 AK 中,这种复杂的催化框架可能是为了防止无用的 ATP/ADP 水解,并调节酶以满足细胞的不同能量需求而出现的。