Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093.
Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2215836120. doi: 10.1073/pnas.2215836120. Epub 2023 Feb 21.
Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.
肌收缩是由肌节中的收缩蛋白阵列执行的。严重的心脏疾病,如心肌病,通常可以是肌球蛋白和肌动蛋白突变的结果。直接描述肌球蛋白-肌动蛋白复合物中的微小变化如何影响其产生力仍然具有挑战性。分子动力学(MD)模拟虽然能够研究蛋白质结构-功能关系,但由于肌球蛋白循环的时间尺度较慢以及缺乏肌球蛋白-肌动蛋白复合物的各种中间结构,因此受到限制。在这里,我们采用比较建模和增强采样 MD 模拟,展示了人类心肌球蛋白在机械化学循环过程中如何产生力。使用 Rosetta 从多个结构模板学习不同肌球蛋白-肌动蛋白状态的初始构象集合。这使我们能够使用高斯加速 MD 有效地对系统的能量景观进行采样。确定与心肌病相关的关键肌球蛋白环残基与肌动蛋白表面形成稳定或亚稳定相互作用。我们发现肌球蛋白运动核心的转变以及 ATP 水解产物从活性位点的释放与肌球蛋白马达核心的转变以及 ATP 水解产物从活性位点的释放是协同偶联的。此外,建议在预功状态下,在开关 I 和开关 II 之间设置一个门以控制磷酸盐的释放。我们的方法展示了将序列和结构信息与马达功能联系起来的能力。