Suppr超能文献

计算机断层扫描放射组学模型预测冠状动脉慢性完全闭塞的介入治疗成功率。

Computed Tomography Radiomics Model Predicts Procedure Success of Coronary Chronic Total Occlusions.

机构信息

Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China (R.L., Y.L.).

Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.C.).

出版信息

Circ Cardiovasc Imaging. 2023 Feb;16(2):e014826. doi: 10.1161/CIRCIMAGING.122.014826. Epub 2023 Feb 21.

Abstract

BACKGROUND

Coronary computed tomography (CT) angiography imaging is useful for the preprocedural evaluation of chronic total occlusion (CTO). However, the predictive value of CT radiomics model for successful percutaneous coronary intervention (PCI) has not been studied. We aimed to develop and validate a CT radiomics model for predicting PCI success of CTOs.

METHODS

In this retrospective study, a radiomics-based model for predicting PCI success was developed on the training and internal validation sets of 202 and 98 patients with CTO, collected from 1 tertiary hospital. The proposed model was validated on an external test set of 75 CTO patients enrolled from another tertiary hospital. CT radiomics features of each CTO lesion were manually labeled and extracted. Other anatomical parameters, including occlusion length, entry morphology, tortuosity, and calcification burden, were also measured. Fifteen radiomics features, 2 quantitative plaque features, and CT-derived Multicenter CTO Registry of Japan score were used to train different models. The predictive values of each model were evaluated for predicting revascularization success.

RESULTS

In the external test set, 75 patients (60 men; 65 years [58.5, 71.5]) with 83 CTO lesions were assessed. Occlusion length was shorter (13.00 mm versus 29.30 mm, =0.007) in PCI success group whereas the presence of tortuous course was more commonly presented in PCI failure group (1.49% versus 25.00%, =0.004). The radiomics score was significantly smaller in PCI success group (0.10 versus 0.55, <0.001). The area under the curve of CT radiomics-based model was significantly higher than that of CT-derived Multicenter CTO Registry of Japan score for predicting PCI success (area under the curve=0.920 versus 0.752, =0.008). The proposed radiomics model accurately identified 89.16% (74/83) CTO lesions with procedure success.

CONCLUSIONS

CT radiomics-based model outperformed CT-derived Multicenter CTO Registry of Japan score for predicting PCI success. The proposed model is more accurate than the conventional anatomical parameters to identify CTO lesions with PCI success.

摘要

背景

冠状动脉计算机断层(CT)血管造影成像对于慢性完全闭塞(CTO)的术前评估很有用。然而,CT 放射组学模型对经皮冠状动脉介入治疗(PCI)成功的预测价值尚未得到研究。我们旨在开发和验证一种用于预测 CTOs PCI 成功的 CT 放射组学模型。

方法

在这项回顾性研究中,我们在一家三级医院收集的 202 名和 98 名 CTO 患者的训练和内部验证集中,开发了一种基于放射组学的预测 PCI 成功的模型。该模型在另一家三级医院纳入的 75 名 CTO 患者的外部测试集中进行了验证。手动标记和提取每个 CTO 病变的 CT 放射组学特征。还测量了其他解剖参数,包括闭塞长度、入路形态、迂曲和钙化负担。使用 15 个放射组学特征、2 个定量斑块特征和 CT 衍生的日本多中心 CTO 注册研究评分来训练不同的模型。评估每个模型预测血运重建成功的预测值。

结果

在外部测试集中,评估了 75 名患者(60 名男性;65 岁[58.5,71.5])的 83 个 CTO 病变。PCI 成功组的闭塞长度更短(13.00 毫米对 29.30 毫米,=0.007),而 PCI 失败组更常见迂曲病变(1.49%对 25.00%,=0.004)。PCI 成功组的放射组学评分明显较小(0.10 对 0.55,<0.001)。基于 CT 放射组学的模型的曲线下面积显著高于 CT 衍生的日本多中心 CTO 注册研究评分用于预测 PCI 成功的曲线下面积(曲线下面积=0.920 对 0.752,=0.008)。所提出的放射组学模型准确地识别了 89.16%(74/83)具有手术成功的 CTO 病变。

结论

基于 CT 放射组学的模型在预测 PCI 成功方面优于 CT 衍生的日本多中心 CTO 注册研究评分。与传统解剖参数相比,该模型更准确地识别 PCI 成功的 CTO 病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验