State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China.
Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
ACS Appl Mater Interfaces. 2023 Mar 1;15(8):10718-10725. doi: 10.1021/acsami.2c21632. Epub 2023 Feb 17.
Single-atom catalysts with a tunable coordination structure have shown grand potential in flexibly altering the selectivity of oxygen reduction reaction (ORR) toward the desired pathway. However, rationally mediating the ORR pathway by modulating the local coordination number of the single-metal sites is still challenging. Herein, we prepare the Nb single-atom catalysts (SACs) with an external-shell oxygen-modulated unsaturated NbN site in carbon nitride and the NbN site anchored in nitrogen-doped carbon carriers, respectively. Compared with typical NbN moieties for 4e ORR, the as-prepared NbN SACs exhibit excellent 2e ORR activity in 0.1 M KOH, with the onset overpotential close to zero (9 mV) and the HO selectivity above 95%, making it one of the state-of-the-art catalysts in the electrosynthesis of hydrogen peroxide. Density functional theory (DFT) theoretical calculations indicate the unsaturated Nb-N moieties and the adjacent oxygen groups optimize the interface bond strength of pivotal intermediates (OOH*) for producing HO, thus accelerating the 2e ORR pathway. Our findings may provide a novel platform for developing SACs with high activity and tunable selectivity.
具有可调谐配位结构的单原子催化剂在灵活改变氧还原反应(ORR)的选择性以达到所需途径方面显示出巨大的潜力。然而,通过调节单金属位点的局部配位数来合理介导 ORR 途径仍然具有挑战性。在此,我们分别在氮化碳中制备了具有外部壳层氧调节不饱和 NbN 位的 Nb 单原子催化剂(SAC)和锚定在氮掺杂碳载体中的 NbN 位。与典型的用于 4e ORR 的 NbN 部分相比,所制备的 NbN SAC 在 0.1 M KOH 中表现出优异的 2e ORR 活性,起始过电势接近零(9 mV),HO 选择性高于 95%,使其成为电合成过氧化氢的最先进催化剂之一。密度泛函理论(DFT)理论计算表明,不饱和 Nb-N 部分和相邻的氧基团优化了产生 HO 的关键中间体(OOH*)的界面键强度,从而加速了 2e ORR 途径。我们的发现可能为开发具有高活性和可调选择性的 SAC 提供了一个新平台。