Department of Radiology, Marmara University, Istanbul, Türkiye.
Department of Radiology, Marmara University, Istanbul, Türkiye.
Acad Radiol. 2023 Sep;30 Suppl 2:S143-S153. doi: 10.1016/j.acra.2023.01.024. Epub 2023 Feb 16.
To develop a simple ultrasound (US) based scoring system to reduce benign breast biopsies.
Women with BI-RADS 4 or 5 breast lesions underwent shear-wave elastography (SWE) imaging before biopsy. Standard US and color Doppler US (CDUS) parameters were recorded, and the size ratio (Sz=longest/shortest diameter) was calculated. Measured/calculated SWE parameters were minimum (SWV) and maximum (SWV) shear velocity, velocity heterogeneity (SWV=SWV-SWV), velocity ratio (SWV=SWV/SWV), and normalized SWV (SWV=(SWV-SWV)/SWV). Linear regression analysis was performed by converting continuous parameters into categorical corresponding equivalents using decision tree analyses. Linear regression models were fitted using stepwise regression analysis and optimal coefficients for the predictors in the models were determined. A scoring model was devised from the results and validated using a different data set from another center consisting of 187 cases with BI-RADS 3, 4, and 5 lesions.
A total of 418 lesions (238 benign, 180 malignant) were analyzed. US and CDUS parameters exhibited poor (AUC=0.592-0.696), SWE parameters exhibited poor-good (AUC=0.607-0.816) diagnostic performance in benign/malignant discrimination. Linear regression models of US+CDUS and US+SWE parameters revealed an AUC of 0.819 and 0.882, respectively. The developed scoring system could have avoided biopsy in 37.8% of benign lesions while missing 1.1% of malignant lesions. The scoring system was validated with a 100% NPV rate with a specificity of 74.6%.
The linear regression model using US+SWE parameters performed better than any single parameter alone. The developed scoring method could lead to a significant decrease in benign biopsies.
开发一种简单的超声(US)评分系统,以减少良性乳腺活检。
对 BI-RADS 4 或 5 级乳腺病变的女性患者在活检前进行剪切波弹性成像(SWE)检查。记录标准 US 和彩色多普勒 US(CDUS)参数,并计算大小比(Sz=最长/最短直径)。测量/计算的 SWE 参数包括最小(SWV)和最大(SWV)剪切速度、速度异质性(SWV=SWV-SWV)、速度比(SWV=SWV/SWV)和归一化 SWV(SWV=(SWV-SWV)/SWV)。通过决策树分析将连续参数转换为分类等效值,进行线性回归分析。使用逐步回归分析拟合线性回归模型,并确定模型中预测因子的最优系数。根据结果设计评分模型,并使用来自另一个中心的包含 BI-RADS 3、4 和 5 级病变的 187 例不同数据集进行验证。
共分析了 418 个病变(238 个良性,180 个恶性)。US 和 CDUS 参数在良性/恶性鉴别中表现不佳(AUC=0.592-0.696),SWE 参数表现为差-良(AUC=0.607-0.816)。US+CDUS 和 US+SWE 参数的线性回归模型显示 AUC 分别为 0.819 和 0.882。开发的评分系统可避免 37.8%的良性病变进行活检,而漏诊 1.1%的恶性病变。该评分系统在验证中具有 100%的阴性预测值(NPV)率和 74.6%的特异性。
使用 US+SWE 参数的线性回归模型比任何单一参数表现都要好。开发的评分方法可显著减少良性活检。