Suppr超能文献

基于舌背图像的糖尿病多色彩表示与融合诊断

Multiple color representation and fusion for diabetes mellitus diagnosis based on back tongue images.

机构信息

The Chinese University of Hong Kong (Shenzhen), Shenzhen, China; Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China; Shenzhen Research Institute of Big Data, Shenzhen, China.

Harbin Institute of Technology at Shenzhen, Shenzhen, China.

出版信息

Comput Biol Med. 2023 Mar;155:106652. doi: 10.1016/j.compbiomed.2023.106652. Epub 2023 Feb 14.

Abstract

Tongue images have been proved to be effective in diabetes mellitus (DM) diagnosis. Without requirement of collecting blood sample, tongue image based diagnosis approach is non-invasive and convenient for the patients. Meanwhile, the colors of tongues play an important in aiding accurate diagnosis. However, the tongues' colors fall on a small color gamut that makes it difficult for the existing color descripts to identify and distinguish the tiny difference of the tongues. To tackle this problem, we introduce a novel color descriptor by representing the colors with the clustering centers, namely color centroid points, of the color points sampled from tongue images. In order to boost the capacity of the descriptor, we extend it into three color spaces, i.e., RGB, HSV and LAB to mine a rich set of color information and exploit the complementary information among the three spaces. Since there exist correlation and complementarity among the features extracted from the three color spaces, we propose a novel multiple color features fusion method for DM diagnosis. Particularly, two projections are learned to project the multiple features to their corresponding shared and specific subspaces, in which their similarity and diversity are firstly measured by the Euclidean Distance and Hilbert Schmidt Independence Criterion (HSIC), respectively. To fully exploit the similar and complementary information, the two components are jointly transformed to their label vector, efficiently embedding the discriminant prior into the model, leading to significant improvement in the diagnosis outcomes. Experimental results on clinical tongue dataset substantiated the effectiveness of our proposed clustering-based color descriptor and the proposed multiple colors fusion approach. Overall, the proposed pipeline for the diagnosis of DM using back tongue images, achieved an average accuracy of up to 93.38%, indicating its potential toward realization of a clinical diagnostic tool for DM. Without loss generality, we also assessed the performance of the novel multiple features fusion method on two public datasets. The experiments prove the superiority of our multiple features learning model on general real-life application.

摘要

舌象已被证明在糖尿病(DM)诊断中具有一定的有效性。基于舌象的诊断方法无需采集血样,具有非侵入性和方便患者的特点。同时,舌象的颜色在辅助准确诊断方面起着重要作用。然而,舌象的颜色范围较小,使得现有的颜色描述难以识别和区分舌象的细微差异。为了解决这个问题,我们引入了一种新的颜色描述符,通过表示从舌象中采样的颜色点的聚类中心,即颜色质心点,来表示颜色。为了提高描述符的容量,我们将其扩展到 RGB、HSV 和 LAB 三个颜色空间,以挖掘丰富的颜色信息,并利用三个空间之间的互补信息。由于从三个颜色空间中提取的特征之间存在相关性和互补性,我们提出了一种新的用于 DM 诊断的多颜色特征融合方法。特别是,我们学习了两个投影,将多个特征分别投影到它们对应的共享子空间和特定子空间中,其中它们的相似性和多样性分别通过欧几里得距离和希尔伯特-施密特独立性准则(HSIC)来度量。为了充分利用相似和互补信息,将这两个分量联合变换到它们的标签向量中,有效地将判别先验嵌入到模型中,从而显著提高了诊断结果。基于临床舌象数据集的实验结果验证了我们提出的基于聚类的颜色描述符和所提出的多颜色融合方法的有效性。总体而言,基于后舌象的 DM 诊断流水线的准确率高达 93.38%,表明其在实现 DM 临床诊断工具方面具有潜力。不失一般性,我们还在两个公共数据集上评估了新的多特征融合方法的性能。实验证明了我们的多特征学习模型在一般实际应用中的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验