基于深度学习的冠状动脉疾病舌象检测可行性研究
Feasibility of tongue image detection for coronary artery disease: based on deep learning.
作者信息
Duan Mengyao, Mao Boyan, Li Zijian, Wang Chuhao, Hu Zhixi, Guan Jing, Li Feng
机构信息
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
School of Life Science, Beijing University of Chinese Medicine, Beijing, China.
出版信息
Front Cardiovasc Med. 2024 Aug 23;11:1384977. doi: 10.3389/fcvm.2024.1384977. eCollection 2024.
AIM
Clarify the potential diagnostic value of tongue images for coronary artery disease (CAD), develop a CAD diagnostic model that enhances performance by incorporating tongue image inputs, and provide more reliable evidence for the clinical diagnosis of CAD, offering new biological characterization evidence.
METHODS
We recruited 684 patients from four hospitals in China for a cross-sectional study, collecting their baseline information and standardized tongue images to train and validate our CAD diagnostic algorithm. We used DeepLabV3 + for segmentation of the tongue body and employed Resnet-18, pretrained on ImageNet, to extract features from the tongue images. We applied DT (Decision Trees), RF (Random Forest), LR (Logistic Regression), SVM (Support Vector Machine), and XGBoost models, developing CAD diagnostic models with inputs of risk factors alone and then with the additional inclusion of tongue image features. We compared the diagnostic performance of different algorithms using accuracy, precision, recall, F1-score, AUPR, and AUC.
RESULTS
We classified patients with CAD using tongue images and found that this classification criterion was effective (ACC = 0.670, AUC = 0.690, Recall = 0.666). After comparing algorithms such as Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and XGBoost, we ultimately chose XGBoost to develop the CAD diagnosis algorithm. The performance of the CAD diagnosis algorithm developed solely based on risk factors was ACC = 0.730, Precision = 0.811, AUC = 0.763. When tongue features were integrated, the performance of the CAD diagnosis algorithm improved to ACC = 0.760, Precision = 0.773, AUC = 0.786, Recall = 0.850, indicating an enhancement in performance.
CONCLUSION
The use of tongue images in the diagnosis of CAD is feasible, and the inclusion of these features can enhance the performance of existing CAD diagnosis algorithms. We have customized this novel CAD diagnosis algorithm, which offers the advantages of being noninvasive, simple, and cost-effective. It is suitable for large-scale screening of CAD among hypertensive populations. Tongue image features may emerge as potential biomarkers and new risk indicators for CAD.
目的
阐明舌象对冠心病(CAD)的潜在诊断价值,开发一种通过纳入舌象输入来提高性能的CAD诊断模型,为CAD的临床诊断提供更可靠的证据,提供新的生物学特征证据。
方法
我们从中国四家医院招募了684例患者进行横断面研究,收集他们的基线信息和标准化舌象,以训练和验证我们的CAD诊断算法。我们使用DeepLabV3+对舌体进行分割,并使用在ImageNet上预训练的Resnet-18从舌象中提取特征。我们应用决策树(DT)、随机森林(RF)、逻辑回归(LR)、支持向量机(SVM)和XGBoost模型,先仅以危险因素为输入开发CAD诊断模型,然后再额外纳入舌象特征开发模型。我们使用准确率、精确率、召回率、F1分数、AUPR和AUC比较不同算法的诊断性能。
结果
我们利用舌象对CAD患者进行分类,发现该分类标准是有效的(ACC = 0.670,AUC = 0.690,召回率 = 0.666)。在比较了决策树(DT)、随机森林(RF)、逻辑回归(LR)、支持向量机(SVM)和XGBoost等算法后,我们最终选择XGBoost来开发CAD诊断算法。仅基于危险因素开发的CAD诊断算法的性能为ACC = 0.730,精确率 = 0.811,AUC = 0.763。当纳入舌象特征时,CAD诊断算法的性能提高到ACC = 0.760,精确率 = 0.773,AUC = 0.786,召回率 = 0.850,表明性能有所提升。
结论
在CAD诊断中使用舌象是可行的,纳入这些特征可以提高现有CAD诊断算法的性能。我们定制了这种新型CAD诊断算法,它具有无创、简单和经济高效的优点。它适用于高血压人群中CAD的大规模筛查。舌象特征可能成为CAD的潜在生物标志物和新的风险指标。