Suppr超能文献

机器学习预测早产儿晚期呼吸支持:一项回顾性队列研究。

Machine learning to predict late respiratory support in preterm infants: a retrospective cohort study.

机构信息

Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.

Division of Neonatology, Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Rd., North Dist., Tainan, 704, Taiwan.

出版信息

Sci Rep. 2023 Feb 17;13(1):2839. doi: 10.1038/s41598-023-29708-4.

Abstract

Bronchopulmonary dysplasia (BPD) has been a critical morbidity in preterm infants. To improve our definition and prediction of BPD is challenging yet indispensable. We aimed to apply machine learning (ML) to investigate effective models by using the recently-proposed and data-driven definition to predict late respiratory support modalities at 36 weeks' post menstrual age (PMA). We collected data on very-low-birth-weight infants born between 2016 and 2019 from the Taiwan Neonatal Network database. Twenty-four attributes associated with their early life and seven ML algorithms were used in our analysis. The target outcomes were overall mortality, death before 36 weeks' PMA, and severity of BPD under the new definition, which served as a proxy for respiratory support modalities. Of the 4103 infants initially considered, 3200 were deemed eligible. The logistic regression algorithm yielded the highest area under the receiver operating characteristic curve (AUROC). After attribute selection, the AUROC of the simplified models remain favorable (e.g., 0.801 when predicting no BPD, 0.850 when predicting grade 3 BPD or death before 36 weeks' PMA, and 0.881 when predicting overall mortality). By using ML, we developed models to predict late respiratory support. Estimators were developed for clinical application after being simplified through attribute selection.

摘要

支气管肺发育不良(BPD)一直是早产儿的严重并发症。改善 BPD 的定义和预测具有挑战性,但却是必不可少的。我们旨在应用机器学习(ML),通过使用最近提出的、基于数据驱动的定义,研究有效的模型,预测胎龄 36 周时的晚期呼吸支持模式。我们从台湾新生儿网络数据库中收集了 2016 年至 2019 年出生的极低出生体重儿的数据。我们的分析中使用了 24 个与婴儿早期生活相关的特征和 7 种 ML 算法。目标结局是总体死亡率、36 周胎龄前死亡和新定义下的 BPD 严重程度,这些结局可作为呼吸支持模式的替代指标。在最初考虑的 4103 名婴儿中,有 3200 名被认为符合条件。逻辑回归算法产生了最高的受试者工作特征曲线下面积(AUROC)。在属性选择后,简化模型的 AUROC 仍然良好(例如,预测无 BPD 的 AUROC 为 0.801,预测 3 级 BPD 或 36 周胎龄前死亡的 AUROC 为 0.850,预测总体死亡率的 AUROC 为 0.881)。通过使用 ML,我们开发了预测晚期呼吸支持的模型。通过属性选择简化后,为临床应用开发了估算器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/659d/9938227/152c829dc26d/41598_2023_29708_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验