State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, China.
Adv Mater. 2023 Apr;35(16):e2212022. doi: 10.1002/adma.202212022. Epub 2023 Mar 9.
X-ray imaging has received sustained attention for healthcare diagnostics and nondestructive inspection. To develop photonic materials with tunable photophysical properties in principle accelerates radiation detection technologies. Here the rational design and synthesis of doped halide perovskite CsCdCl :Mn , R (R = Ti, Zr, Hf, and Sn) are reported as next generation X-ray storage phosphors, and the capability is greatly improved by trap management via Mn site occupation manipulation and heterovalent substitution. Specially, CsCdCl :Mn , Zr displays zero-thermal-quenching (TQ) radioluminescence and anti-TQ X-ray-activated persistent luminescence even up to 448 K, further revealing the charge-carrier compensation and redeployment mechanisms. X-ray imaging with the resolution of 12.5 lp mm is demonstrated, and convenient 3D X-ray imaging for the curved objects is realized in a time-lapse manner. This work demonstrates efficient modulation of energy traps to achieve high storage capacities and promote future research into flexible X-ray detectors.
X 射线成像是医疗诊断和无损检测领域的研究热点。开发具有可调光子物理特性的光子材料,有望加速辐射探测技术的发展。本工作通过掺杂卤化物钙钛矿 CsCdCl:Mn,R(R=Ti、Zr、Hf 和 Sn),实现了下一代 X 射线存储荧光粉的合理设计与合成,并通过 Mn 位占据操作和异价取代进行陷阱管理,显著提高了存储性能。特别地,CsCdCl:Mn,Zr 表现出零热猝灭(TQ)辐射发光和抗 TQ 的 X 射线激活持续发光,甚至在 448 K 下仍能保持,进一步揭示了载流子补偿和再分配机制。该工作实现了分辨率为 12.5 lp mm 的 X 射线成像,并以时间推移的方式实现了对曲面物体的便捷 3D X 射线成像。本工作通过对能量陷阱的有效调控,实现了高存储容量,并为未来的柔性 X 射线探测器研究提供了新的思路。