College of Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
ACS Appl Mater Interfaces. 2023 Mar 8;15(9):11812-11826. doi: 10.1021/acsami.2c22519. Epub 2023 Feb 21.
TM-N is becoming a comforting catalytic center for sustainable and green ammonia synthesis under ambient conditions, resulting in increasing interest in single-atom catalysts (SACs) for the electrochemical nitrogen reduction reaction (NRR). However, given the poor activity and unsatisfactory selectivity of existing catalysts, it remains a long-standing challenge to design efficient catalysts for nitrogen fixation. Currently, the two-dimensional (2D) graphitic carbon-nitride substrate provides abundant and evenly distributed holes for stably supporting transition-metal atoms, which presents a fascinating prospect for overcoming this challenge and promoting single-atom NRR. An emerging holey graphitic carbon-nitride skeleton with a CN stoichiometric ratio (g-CN) from a supercell of graphene is constructed, which provides outstanding electric conductivity for achieving high-efficiency NRR due to the Dirac band dispersion. Herein, a high-throughput first-principles calculation is carried out to evaluate the feasibility of π-d conjugated SACs resulting from a single TM atom anchored on g-CN (TM = Sc-Au) for NRR. We find that W metal embedded in g-CN (W@g-CN) can compromise the ability to adsorb the key target reaction species (NH and NH), hence acquiring an optimal NRR behavior among 27 TM-candidates. Our calculations demonstrate that W@g-CN shows a well-suppressed HER ability and, impressively, a low energy cost of -0.46 V. Additionally, all-around descriptors are proposed to uncover the fundamental mechanism of NRR activity, among which a 3D volcano plot (limiting potential, screening strategy, and electron origin) uncovers the NRR activity trend, achieving a quick and high-efficiency prescreening for numerous candidates. Overall, the strategy of the structure- and activity-based TM-N-containing unit design will offer useful insight for further theoretical and experimental attempts.
TM-N 正在成为环境条件下可持续和绿色合成氨的令人欣慰的催化中心,因此人们对用于电化学氮气还原反应 (NRR) 的单原子催化剂 (SAC) 越来越感兴趣。然而,鉴于现有催化剂的活性差和选择性不理想,设计高效的固氮催化剂仍然是一个长期存在的挑战。目前,二维 (2D) 石墨相氮化碳基底为稳定支撑过渡金属原子提供了丰富且均匀分布的孔,为克服这一挑战和促进单原子 NRR 提供了迷人的前景。构建了一个新兴的具有孔状石墨相氮化碳骨架的超晶格石墨烯,由于狄拉克能带色散,它为实现高效 NRR 提供了出色的导电性。在此,通过高通量第一性原理计算评估了单 TM 原子锚定在 g-CN(TM = Sc-Au)上的π共轭 SAC 用于 NRR 的可行性。我们发现,嵌入 g-CN 中的 W 金属(W@g-CN)可以削弱对关键目标反应物种(NH 和 NH)的吸附能力,从而在 27 种 TM 候选物中获得最佳的 NRR 行为。我们的计算表明,W@g-CN 表现出良好的 HER 抑制能力,令人印象深刻的是,其能量成本低至-0.46 V。此外,还提出了全方位描述符来揭示 NRR 活性的基本机制,其中 3D 火山图(极限电位、筛选策略和电子起源)揭示了 NRR 活性趋势,实现了对众多候选物的快速高效预筛选。总体而言,基于结构和活性的 TM-N 含单元设计策略将为进一步的理论和实验尝试提供有用的见解。