Sathishkumar Nadaraj, Chen Hsin-Tsung
Department of Chemistry, R&D Center for Membrane Technology, and Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Chungli District, Taoyuan City 320314, Taiwan.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15545-15560. doi: 10.1021/acsami.3c00559. Epub 2023 Mar 17.
The electrochemical nitrogen reduction reaction (NRR) offers a promising strategy to resolve high energy consumption in the nitrogen industry. Recently, the regulation of the electronic structure of single-atom catalysts (SACs) by adjusting their coordination environment has emerged as a rather promising strategy to further enhance their electrocatalytic activity. Herein, we design novel SACs supported by thiophene-linked porphyrin (TM-N/TP and TM-NB/TP, where TM = Sc to Au) as potential NRR catalysts using density functional theory calculations. Among these catalysts, TM-N/TP (TM = Ti, Nb, Mo, Ta, W, and Re) and TM-N/TP with a water bilayer (TM = Nb, Mo, W, and Re) show excellent activity (low limiting potential) but low selectivity. Encouragingly, we find that Mo-NB/TP, Mo-NB-2/TP, W-NB/TP, W-NB-2/TP, Re-NB/TP, Re-NB-2/TP, and Re-NB-1/TP serve as the most efficient NRR electrocatalysts, as they present stability, superior activity, better selectivity with low limiting potentials (-0.18 ∼ -0.90 V), and high Faradaic efficiencies (>99.80%). Based on microkinetic modeling, kinetic analysis of the NRR is performed and shows that the Re-NB-1/TP catalyst is more efficient for NH formation. Additionally, multiple-level descriptors provide insight into the origin of NRR activity and enable fast prescreening among numerous candidates. This work provides a new perspective to design highly efficient catalysts for the NRR under ambient conditions.
电化学氮还原反应(NRR)为解决氮工业中的高能耗问题提供了一种很有前景的策略。最近,通过调整单原子催化剂(SACs)的配位环境来调控其电子结构,已成为进一步提高其电催化活性的一种颇具前景的策略。在此,我们使用密度泛函理论计算,设计了由噻吩连接的卟啉负载的新型SACs(TM-N/TP和TM-NB/TP,其中TM = Sc到Au)作为潜在的NRR催化剂。在这些催化剂中,TM-N/TP(TM = Ti、Nb、Mo、Ta、W和Re)以及带有双层水的TM-N/TP(TM = Nb、Mo、W和Re)表现出优异的活性(低极限电位)但选择性较低。令人鼓舞的是,我们发现Mo-NB/TP、Mo-NB-2/TP、W-NB/TP、W-NB-2/TP、Re-NB/TP、Re-NB-2/TP和Re-NB-1/TP是最有效的NRR电催化剂,因为它们具有稳定性、优异的活性、在低极限电位(-0.18 ∼ -0.90 V)下具有更好的选择性以及高法拉第效率(>99.80%)。基于微观动力学建模对NRR进行了动力学分析,结果表明Re-NB-1/TP催化剂在NH生成方面更高效。此外,多级描述符有助于深入了解NRR活性的起源,并能够在众多候选物中进行快速预筛选。这项工作为在环境条件下设计用于NRR的高效催化剂提供了新的视角。