Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America.
Instituto de Ciencias Fisicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
PLoS Comput Biol. 2023 Feb 21;19(2):e1010894. doi: 10.1371/journal.pcbi.1010894. eCollection 2023 Feb.
Large networks of interconnected components, such as genes or machines, can coordinate complex behavioral dynamics. One outstanding question has been to identify the design principles that allow such networks to learn new behaviors. Here, we use Boolean networks as prototypes to demonstrate how periodic activation of network hubs provides a network-level advantage in evolutionary learning. Surprisingly, we find that a network can simultaneously learn distinct target functions upon distinct hub oscillations. We term this emergent property resonant learning, as the new selected dynamical behaviors depend on the choice of the period of the hub oscillations. Furthermore, this procedure accelerates the learning of new behaviors by an order of magnitude faster than without oscillations. While it is well-established that modular network architecture can be selected through evolutionary learning to produce different network behaviors, forced hub oscillations emerge as an alternative evolutionary learning strategy for which network modularity is not necessarily required.
大型的相互连接的组件网络,如基因或机器,可以协调复杂的行为动态。一个悬而未决的问题是确定允许这些网络学习新行为的设计原则。在这里,我们使用布尔网络作为原型来展示网络枢纽的周期性激活如何为进化学习提供网络级优势。令人惊讶的是,我们发现网络可以在不同的枢纽振荡下同时学习不同的目标函数。我们将这种新出现的特性称为共振学习,因为新选择的动态行为取决于枢纽振荡周期的选择。此外,该过程将学习新行为的速度提高了一个数量级,而无需振荡。虽然模块化网络架构可以通过进化学习来选择以产生不同的网络行为已经得到很好的证实,但是强制枢纽振荡作为一种替代的进化学习策略出现,并不一定需要网络的模块化。