Huitzil Saúl, Sandoval-Motta Santiago, Frank Alejandro, Aldana Maximino
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Front Physiol. 2018 Dec 20;9:1836. doi: 10.3389/fphys.2018.01836. eCollection 2018.
There is undeniable evidence showing that bacteria have strongly influenced the evolution and biological functions of multicellular organisms. It has been hypothesized that many host-microbial interactions have emerged so as to increase the adaptive fitness of the (the host plus its microbiota). Although this association has been corroborated for many specific cases, general mechanisms explaining the role of the microbiota in the evolution of the host are yet to be understood. Here we present an evolutionary model in which a network representing the host adapts in order to perform a predefined function. During its adaptation, the host network (HN) can interact with other networks representing its microbiota. We show that this interaction greatly accelerates and improves the adaptability of the HN without decreasing the adaptation of the microbial networks. Furthermore, the adaptation of the HN to perform several functions is possible only when it interacts with many different bacterial networks in a specialized way (each bacterial network participating in the adaptation of one function). Disrupting these interactions often leads to non-adaptive states, reminiscent of dysbiosis, where none of the networks the holobiont consists of can perform their respective functions. By considering the holobiont as a unit of selection and focusing on the adaptation of the host to predefined but arbitrary functions, our model predicts the need for specialized diversity in the microbiota. This structural and dynamical complexity in the holobiont facilitates its adaptation, whereas a homogeneous (non-specialized) microbiota is inconsequential or even detrimental to the holobiont's evolution. To our knowledge, this is the first model in which symbiotic interactions, diversity, specialization and dysbiosis in an ecosystem emerge as a result of coevolution. It also helps us understand the emergence of complex organisms, as they adapt more easily to perform multiple tasks than non-complex ones.
有不可否认的证据表明,细菌对多细胞生物的进化和生物学功能产生了强烈影响。据推测,许多宿主与微生物的相互作用已经出现,以提高(宿主及其微生物群)的适应性。尽管这种关联在许多具体案例中得到了证实,但解释微生物群在宿主进化中作用的一般机制仍有待了解。在这里,我们提出了一个进化模型,其中代表宿主的网络为了执行预定义的功能而进行适应。在其适应过程中,宿主网络(HN)可以与代表其微生物群的其他网络相互作用。我们表明,这种相互作用极大地加速并提高了HN的适应性,而不会降低微生物网络的适应性。此外,只有当HN以一种特殊的方式与许多不同的细菌网络相互作用时(每个细菌网络参与一种功能的适应),HN才有可能适应执行多种功能。破坏这些相互作用通常会导致非适应性状态,这让人联想到生态失调,即全生物所包含的任何网络都无法执行其各自的功能。通过将全生物视为一个选择单位,并专注于宿主对预定义但任意功能的适应,我们的模型预测了微生物群中需要专门的多样性。全生物中的这种结构和动态复杂性促进了其适应,而同质化(非专门化)的微生物群对全生物的进化无关紧要甚至有害。据我们所知,这是第一个共生相互作用、多样性、专门化和生态失调在生态系统中作为共同进化结果出现的模型。它还帮助我们理解复杂生物的出现,因为它们比非复杂生物更容易适应执行多项任务。