IBiTech - Biommeda Research Group, Faculty of Engineering and Architecture, Ghent University, Gent, Belgium.
Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway.
Biophys J. 2023 Jul 25;122(14):2960-2972. doi: 10.1016/j.bpj.2023.02.021. Epub 2023 Feb 21.
Assessing kinetics in biological processes with molecular dynamics simulations remains a computational and conceptual challenge, given the large time and length scales involved. For kinetic transport of biochemical compounds or drug molecules, the permeability through the phospholipid membranes is a key kinetic property, but long timescales are hindering the accurate computation. Technological advances in high-performance computing therefore need to be accompanied by theoretical and methodological developments. In this contribution, the replica exchange transition interface sampling (RETIS) methodology is shown to give perspective toward observing longer permeation pathways. It is first reviewed how RETIS, a path-sampling methodology that gives in principle exact kinetics, can be used to compute membrane permeability. Next, recent and current developments in three RETIS aspects are discussed: several new Monte Carlo moves in the path-sampling algorithm, memory reduction by reducing pathlengths, and exploitation of parallel computing with CPU-imbalanced replicas. Finally, the memory reduction presenting a new replica exchange implementation, coined REPPTIS, is showcased with a permeant needing to pass a membrane with two permeation channels, either representing an entropic or energetic barrier. The REPPTIS results showed clearly that inclusion of some memory and enhancing ergodic sampling via replica exchange moves are both necessary to obtain correct permeability estimates. In an additional example, ibuprofen permeation through a dipalmitoylphosphatidylcholine membrane was modeled. REPPTIS succeeded in estimating the permeability of this amphiphilic drug molecule with metastable states along the permeation pathway. In conclusion, the presented methodological advances allow for deeper insight into membrane biophysics even if the pathways are slow, as RETIS and REPPTIS push the permeability calculations to longer timescales.
评估生物过程中的动力学仍然是一个计算和概念上的挑战,因为涉及到的时间和长度尺度都很大。对于生化化合物或药物分子的动力学传输,通过磷脂膜的渗透率是一个关键的动力学特性,但长的时间尺度阻碍了准确的计算。因此,高性能计算的技术进步需要伴随着理论和方法的发展。在本研究中,复制交换跃迁界面采样(RETIS)方法被证明可以观察到更长的渗透途径。首先回顾了 RETIS 如何用于计算膜渗透性,RETIS 是一种路径采样方法,从原则上讲可以给出准确的动力学。接下来,讨论了 RETIS 的三个方面的最新和当前进展:路径采样算法中的几个新的蒙特卡罗移动、通过减少路径长度来减少内存以及利用 CPU 不平衡副本的并行计算。最后,展示了一种新的复制交换实现,称为 REPPTIS,它通过需要穿过具有两个渗透通道的膜的渗透物来减少内存,这两个通道分别代表熵或能量障碍。REPPTIS 的结果清楚地表明,包含一些内存并通过复制交换移动增强遍历采样对于获得正确的渗透率估计都是必要的。在另一个例子中,布洛芬通过二棕榈酰磷脂酰胆碱膜的渗透进行了建模。REPPTIS 成功地估计了这种两亲性药物分子在渗透途径中具有亚稳态的渗透率。总之,即使路径缓慢,所提出的方法学进展也允许更深入地了解膜生物物理学,因为 RETIS 和 REPPTIS 将渗透率计算推向更长的时间尺度。