Suppr超能文献

电荷密度演化控制界面摩擦。

Charge Density Evolution Governing Interfacial Friction.

机构信息

School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China.

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

出版信息

J Am Chem Soc. 2023 Mar 8;145(9):5536-5544. doi: 10.1021/jacs.3c00335. Epub 2023 Feb 22.

Abstract

It is well-known that the electron nature of a solid in contact plays a predominant role in determining the many properties of the contact systems, but the general rules of electron coupling that govern interfacial friction remain an open issue for the surface/interface community. Here, density functional theory calculations were used to investigate the physical origins of friction of solid interfaces. It was found that interfacial friction can be inherently traced back to the electronic barrier to the change in the contact configuration of the joints in slip due to the resistance of energy level rearrangement leading to electron transfer, which applies for various interface types ranging from van der Waals, metallic, and ionic to covalent joints. The variation of the electron density accompanying contact conformation changes along the sliding pathways is defined to track the frictional energy dissipation process occurring in slip. The results demonstrate that the frictional energy landscapes evolve synchronously with responding charge density evolution along sliding pathways, yielding an explicitly linear dependence of frictional dissipation on electronic evolution. The correlation coefficient enables us to interpret the fundamental concept of shear strength. The present charge evolution model thereby provides insights into the classic hypothesis that the friction force scales with the real contact area. This may shed light on the intrinsic origin of friction at the electronic level, opening the way to the rational design of nanomechanical devices as well as the understanding of the natural faults.

摘要

众所周知,处于接触状态下的固体的电子性质在决定接触系统的许多性质方面起着主导作用,但控制界面摩擦的电子耦合一般规律仍然是表面/界面界的一个悬而未决的问题。在这里,我们使用密度泛函理论计算来研究固体界面摩擦的物理起源。研究发现,界面摩擦可以从电子势垒固有地追溯到由于能级排列的阻力导致电子转移而导致的接头在滑动中接触构型变化的阻力,这适用于从范德华、金属和离子到共价接头的各种界面类型。定义伴随接触构象变化的电子密度变化来跟踪在滑动中发生的摩擦能量耗散过程。结果表明,摩擦能量景观与沿滑动路径的响应电荷密度演化同步演变,从而导致摩擦耗散与电子演化之间存在明显的线性关系。相关系数使我们能够解释剪切强度的基本概念。因此,目前的电荷演化模型为经典假设提供了新的认识,即摩擦力与实际接触面积成正比。这可能揭示了电子层面摩擦的内在起源,为纳米机械装置的合理设计以及对自然故障的理解开辟了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验