Suppr超能文献

利用遥感衍生环境变量、存档实地数据和人工智能进行全国湿地测绘。

National wetland mapping using remote-sensing-derived environmental variables, archive field data, and artificial intelligence.

作者信息

Rapinel Sébastien, Panhelleux Léa, Gayet Guillaume, Vanacker Rachel, Lemercier Blandine, Laroche Bertrand, Chambaud François, Guelmami Anis, Hubert-Moy Laurence

机构信息

LETG UMR 6554, University of Rennes - CNRS, place du recteur Henri le Moal, Rennes, 35000, France.

PatriNat OFB-CNRS-MNHN, 57 rue Cuvier, Paris, 75231, France.

出版信息

Heliyon. 2023 Feb 6;9(2):e13482. doi: 10.1016/j.heliyon.2023.e13482. eCollection 2023 Feb.

Abstract

While wetland ecosystem services are widely recognized, the lack of fine-scale national inventories prevents successful implementation of conservation policies. Wetlands are difficult to map due to their complex fine-grained spatial pattern and fuzzy boundaries. However, the increasing amount of open high-spatial-resolution remote sensing data and accurately georeferenced field data archives, as well as progress in artificial intelligence (AI), provide opportunities for fine-scale national wetland mapping. The objective of this study was to map wetlands over mainland France (ca. 550,000 km) by applying AI to environmental variables derived from remote sensing and archive field data. A random forest model was calibrated using spatial cross-validation according to the precision-recall area under the curve (PR-AUC) index using ca. 135,000 soil or flora plots from archive databases, as well as 5 m topographical variables derived from an airborne DTM and a geological map. The model was validated using an experimentally designed sampling strategy with ca. 3000 plots collected during a ground survey in 2021 along non-wetland/wetland transects. Map accuracy was then compared to those of nine existing wetland maps with global, European, or national coverage. The model-derived suitability map (PR-AUC 0.76) highlights the gradual boundaries and fine-grained pattern of wetlands. The binary map is significantly more accurate (F1-score 0.75, overall accuracy 0.67) than existing wetland maps. The approach and end-results are of important value for spatial planning and environmental management since the high-resolution suitability and binary maps enable more targeted conservation measures to support biodiversity conservation, water resources maintenance, and carbon storage.

摘要

虽然湿地生态系统服务已得到广泛认可,但缺乏精细尺度的国家清单阻碍了保护政策的成功实施。由于湿地具有复杂的细粒度空间格局和模糊的边界,因此难以绘制其地图。然而,日益增多的高空间分辨率遥感开放数据和精确地理参考的实地数据档案,以及人工智能(AI)的进展,为精细尺度的国家湿地制图提供了机会。本研究的目的是通过将人工智能应用于从遥感和档案实地数据中获取的环境变量,绘制法国大陆(约550,000平方公里)的湿地地图。使用约135,000个来自档案数据库的土壤或植物群落样地以及从航空数字地形模型(DTM)和地质图中获取的5米地形变量,根据曲线下精度召回面积(PR-AUC)指数,通过空间交叉验证对随机森林模型进行校准。该模型使用2021年地面调查期间沿着非湿地/湿地样带收集的约3000个样地的实验设计采样策略进行验证。然后将地图精度与九张现有全球、欧洲或国家覆盖范围的湿地地图进行比较。模型得出的适宜性地图(PR-AUC为0.76)突出了湿地的渐变边界和细粒度格局。二元地图比现有湿地地图的准确性显著更高(F1分数为0.75,总体精度为0.67)。该方法和最终结果对于空间规划和环境管理具有重要价值,因为高分辨率的适宜性和二元地图能够采取更具针对性的保护措施,以支持生物多样性保护、水资源维护和碳储存。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/513e/9929292/1fa458d8dc39/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验