Vallet Améline, Dupuy Stéphane, Verlynde Matthieu, Gaetano Raffaele
Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France.
Université Paris-Saclay, AgroParisTech, CNRS, Ecole des Ponts ParisTech, Cirad, EHESS, UMR CIRED, 94130, Nogent-sur-Marne, France.
Sci Data. 2024 Aug 23;11(1):915. doi: 10.1038/s41597-024-03750-x.
Land Use and Land Cover (LULC) maps are important tools for environmental planning and social-ecological modeling, as they provide critical information for evaluating risks, managing natural resources, and facilitating effective decision-making. This study aimed to generate a very high spatial resolution (0.5 m) and detailed (21 classes) LULC map for the greater Mariño watershed (Peru) in 2019, using the MORINGA processing chain. This new method for LULC mapping consisted in a supervised object-based LULC classification, using the random forest algorithm along with multi-sensor satellite imagery from which spectral and textural predictors were derived (a very high spatial resolution Pléiades image and a time serie of high spatial resolution Sentinel-2 images). The random forest classifier showed a very good performance and the LULC map was further improved through additional post-treatment steps that included cross-checking with external GIS data sources and manual correction using photointerpretation, resulting in a more accurate and reliable map. The final LULC provides new information for environmental management and monitoring in the greater Mariño watershed. With this study we contribute to the efforts to develop standardized and replicable methodologies for high-resolution and high-accuracy LULC mapping, which is crucial for informed decision-making and conservation strategies.
土地利用和土地覆盖(LULC)地图是环境规划和社会生态建模的重要工具,因为它们为评估风险、管理自然资源和促进有效决策提供关键信息。本研究旨在利用MORINGA处理链,为2019年秘鲁大马里尼奥流域生成一幅空间分辨率极高(0.5米)且详细(21类)的LULC地图。这种新的LULC制图方法包括基于对象的监督式LULC分类,使用随机森林算法以及多传感器卫星图像,从中提取光谱和纹理预测因子(一幅空间分辨率极高的昴宿星图像和一系列高空间分辨率的哨兵 - 2图像)。随机森林分类器表现出非常好的性能,并且通过额外的后处理步骤进一步改进了LULC地图,这些步骤包括与外部GIS数据源进行交叉核对以及使用照片判读进行人工校正,从而得到一幅更准确、更可靠的地图。最终的LULC地图为大马里尼奥流域的环境管理和监测提供了新信息。通过这项研究,我们为开发用于高分辨率和高精度LULC制图的标准化且可复制的方法做出了贡献,这对于明智的决策和保护策略至关重要。