Suppr超能文献

随机生存森林超参数的优化调整及其在肝脏疾病中的应用

Optimal Tuning of Random Survival Forest Hyperparameter with an Application to Liver Disease.

作者信息

Dauda Kazeem Adesina

机构信息

Department of Statistics and Mathematical Sciences, Kwara State University, Malete, Nigeria.

出版信息

Malays J Med Sci. 2022 Dec;29(6):67-76. doi: 10.21315/mjms2022.29.6.7. Epub 2022 Dec 22.

Abstract

BACKGROUND

Random Forest (RF) is a technique that optimises predictive accuracy by fitting an ensemble of trees to stabilise model estimates. The RF techniques were adapted into survival analysis to model the survival of patients with liver disease in order to identify biomarkers that are highly influential in patient prognostics.

METHODS

The methodology of this study begins by applying the classical Cox proportional hazard (Cox-PH) model and three parametric survival models (exponential, Weibull and lognormal) to the published dataset. The study further applied the supervised learning methods of Tuning Random Survival Forest (TRSF) parameters and the conditional inference Forest (Cforest) to optimally predict patient survival probabilities.

RESULTS

The efficiency of these models was compared using the Akaike information criteria (AIC) and integrated Brier score (IBS). The results revealed that the Cox-PH model (AIC = 185.7233) outperforms the three classical models. We further analysed these data to observe the functional relationships that exist between the patient survival function and the covariates using TRSF.

CONCLUSION

The IBS result of the TRFS demonstrated satisfactory performance over other methods. Ultimately, it was observed from the TRSF results that some of the covariates contributed positively and negatively to patient survival prognostics.

摘要

背景

随机森林(RF)是一种通过拟合树的集合来优化预测准确性以稳定模型估计的技术。随机森林技术被应用于生存分析,以对肝病患者的生存情况进行建模,从而识别对患者预后有高度影响的生物标志物。

方法

本研究的方法首先将经典的Cox比例风险(Cox-PH)模型和三个参数生存模型(指数模型、威布尔模型和对数正态模型)应用于已发表的数据集。该研究进一步应用调整随机生存森林(TRSF)参数和条件推断森林(Cforest)的监督学习方法来最优地预测患者生存概率。

结果

使用赤池信息准则(AIC)和综合Brier评分(IBS)对这些模型的效率进行了比较。结果显示,Cox-PH模型(AIC = 185.7233)优于三个经典模型。我们进一步使用TRSF分析这些数据,以观察患者生存函数与协变量之间存在的功能关系。

结论

TRFS的IBS结果显示出比其他方法更令人满意的性能。最终,从TRSF结果中观察到,一些协变量对患者生存预后有正向和负向的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d76/9910370/506c57385f9f/07mjms2906_oaf1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验