Suppr超能文献

一种用于生存数据的神经网络模型。

A neural network model for survival data.

作者信息

Faraggi D, Simon R

机构信息

Biometric Research Branch, National Cancer Institute, Rockville, MD 20852.

出版信息

Stat Med. 1995 Jan 15;14(1):73-82. doi: 10.1002/sim.4780140108.

Abstract

Neural networks have received considerable attention recently, mostly by non-statisticians. They are considered by many to be very promising tools for classification and prediction. In this paper we present an approach to modelling censored survival data using the input-output relationship associated with a simple feed-forward neural network as the basis for a non-linear proportional hazards model. This approach can be extended to other models used with censored survival data. The proportional hazards neural network parameters are estimated using the method of maximum likelihood. These maximum likelihood based models can be compared, using readily available techniques such as the likelihood ratio test and the Akaike criterion. The neural network models are illustrated using data on the survival of men with prostatic carcinoma. A method of interpreting the neural network predictions based on the factorial contrasts is presented.

摘要

神经网络最近受到了广泛关注,主要是受到非统计学家的关注。许多人认为它们是用于分类和预测的非常有前途的工具。在本文中,我们提出了一种使用与简单前馈神经网络相关的输入-输出关系对删失生存数据进行建模的方法,以此作为非线性比例风险模型的基础。这种方法可以扩展到用于删失生存数据的其他模型。比例风险神经网络参数使用最大似然法进行估计。这些基于最大似然的模型可以使用诸如似然比检验和赤池准则等现成技术进行比较。使用前列腺癌男性患者的生存数据对神经网络模型进行了说明。提出了一种基于因子对比来解释神经网络预测的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验