Suppr超能文献

预测步行、跑步和爬楼梯连续变化过程中的个性化关节运动学

Predicting Individualized Joint Kinematics Over Continuous Variations of Walking, Running, and Stair Climbing.

作者信息

Reznick Emma, Welker Cara Gonzalez, Gregg Robert D

机构信息

Department of RoboticsUniversity of Michigan Ann Arbor MI 48109 USA.

Department of Mechanical EngineeringUniversity of Colorado Boulder Boulder CO 80309 USA.

出版信息

IEEE Open J Eng Med Biol. 2023 Jan 5;3:211-217. doi: 10.1109/OJEMB.2023.3234431. eCollection 2022.

Abstract

Accounting for gait individuality is important to positive outcomes with wearable robots, but manually tuning multi-activity models is time-consuming and not viable in a clinic. Generalizations can possibly be made to predict gait individuality in unobserved conditions. Kinematic individuality-how one person's joint angles differ from the group-is quantified for every subject, joint, ambulation mode (walking, running, stair ascent, and stair descent), and intramodal task (speed, incline) in an open-access dataset with 10 able-bodied subjects. Four N-way ANOVAs test how prediction methods affect the fit to experimental data between and within ambulation modes. We test whether walking individuality (measured at a single speed on level ground) carries across modes, or whether a mode-specific prediction (based on a single task for each mode) is significantly more effective. Kinematic individualization improves fit across joint and task if we consider each mode separately. Across all modes, tasks, and joints, modal individualization improved the fit in 81% of trials, improving the fit on average by 4.3[Formula: see text] across the gait cycle. This was statistically significant at all joints for walking and running, and half the joints for stair ascent/descent. For walking and running, kinematic individuality can be easily generalized within mode, but the trends are mixed on stairs depending on joint.

摘要

考虑步态个体差异对于可穿戴机器人取得积极效果很重要,但在临床中手动调整多活动模型既耗时又不可行。有可能进行概括以预测未观察到的情况下的步态个体差异。在一个包含10名健全受试者的开放获取数据集中,针对每个受试者、关节、步行模式(行走、跑步、上楼梯和下楼梯)以及模式内任务(速度、坡度),对运动个体差异——一个人的关节角度与群体的差异——进行了量化。四项N向方差分析测试了预测方法如何影响不同步行模式之间以及模式内实验数据的拟合度。我们测试步行个体差异(在水平地面上以单一速度测量)是否能跨模式存在,或者特定模式的预测(基于每个模式的单一任务)是否明显更有效。如果我们分别考虑每个模式,运动个体化会提高关节和任务的拟合度。在所有模式、任务和关节中,模式个体化在81%的试验中提高了拟合度,在整个步态周期中平均提高了4.3[公式:见正文]。这在行走和跑步的所有关节以及上楼梯/下楼梯的一半关节处具有统计学意义。对于行走和跑步,运动个体差异可以很容易地在模式内进行概括,但在楼梯上,根据关节不同,趋势有所不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74b2/9928215/9705a2819cfa/gregg1-3234431.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验