在现实世界中行走时实现外骨骼辅助的个性化定制。
Personalizing exoskeleton assistance while walking in the real world.
机构信息
Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.
出版信息
Nature. 2022 Oct;610(7931):277-282. doi: 10.1038/s41586-022-05191-1. Epub 2022 Oct 12.
Personalized exoskeleton assistance provides users with the largest improvements in walking speed and energy economy but requires lengthy tests under unnatural laboratory conditions. Here we show that exoskeleton optimization can be performed rapidly and under real-world conditions. We designed a portable ankle exoskeleton based on insights from tests with a versatile laboratory testbed. We developed a data-driven method for optimizing exoskeleton assistance outdoors using wearable sensors and found that it was equally effective as laboratory methods, but identified optimal parameters four times faster. We performed real-world optimization using data collected during many short bouts of walking at varying speeds. Assistance optimized during one hour of naturalistic walking in a public setting increased self-selected speed by 9 ± 4% and reduced the energy used to travel a given distance by 17 ± 5% compared with normal shoes. This assistance reduced metabolic energy consumption by 23 ± 8% when participants walked on a treadmill at a standard speed of 1.5 m s. Human movements encode information that can be used to personalize assistive devices and enhance performance.
个性化的外骨骼辅助系统为用户提供了最大的步行速度和能量效率提升,但需要在不自然的实验室条件下进行长时间的测试。在这里,我们展示了可以在真实环境下快速进行外骨骼优化。我们基于多功能实验室测试平台的测试结果,设计了一种便携式踝关节外骨骼。我们开发了一种使用可穿戴传感器在户外优化外骨骼辅助的基于数据的方法,发现它与实验室方法同样有效,但能更快地确定最佳参数,速度快了四倍。我们使用在不同速度下进行的多次短程行走中收集的数据进行了实际优化。与正常鞋子相比,在公共环境中自然行走 1 小时优化后的辅助系统使自我选择的速度提高了 9 ± 4%,使行走给定距离的能量消耗减少了 17 ± 5%。当参与者以 1.5 m/s 的标准速度在跑步机上行走时,这种辅助系统将代谢能量消耗降低了 23 ± 8%。人类运动可以编码信息,这些信息可以用于个性化辅助设备并提高性能。