Suppr超能文献

快速一步法合成全长 214 个氨基酸的 S2 噬菌体素 N 端结构域

Rapid Single-Shot Synthesis of the 214 Amino Acid-Long N-Terminal Domain of Pyocin S2.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.

出版信息

ACS Chem Biol. 2023 Mar 17;18(3):518-527. doi: 10.1021/acschembio.2c00862. Epub 2023 Feb 23.

Abstract

The impermeable outer membrane of is bypassed by antibacterial proteins known as S-type pyocins. Because of their properties, pyocins are investigated as a potential new class of antimicrobials against infections. Their production and modification, however, remain challenging. To address this limitation, we employed automated fast-flow peptide synthesis for the rapid production of a pyocin S2 import domain. The N-terminal domain sequence (PyS2) was synthesized in under 10 h and purified to yield milligram quantities of the desired product. To our knowledge, the 214 amino acid sequence of PyS2 is among the longest peptides produced from a "single-shot" synthesis, i.e., made in a single stepwise route without the use of ligation techniques. Biophysical characterization of the PyS2 with circular dichroism was consistent with the literature reports. Fluorescently labeled PyS2 binds to expressing the cognate ferripyoverdine receptor and is taken up into the periplasm. This selective uptake was validated with confocal and super resolution microscopy, flow cytometry, and fluorescence recovery after photobleaching. These modified, synthetic S-type pyocin domains can be used to probe import mechanisms of and leveraged to develop selective antimicrobial agents that bypass the outer membrane.

摘要

被称为 S 型噬菌体的抗菌蛋白可绕过 的不可渗透的外膜。由于其特性,噬菌体被作为一种对抗 感染的潜在新型抗菌药物进行研究。然而,它们的生产和修饰仍然具有挑战性。为了解决这一限制,我们采用自动化快速流动肽合成来快速生产噬菌体 S2 导入结构域。该 N 端结构域序列(PyS2)在不到 10 小时内合成,并经过纯化可得到毫克级的目标产物。据我们所知,PyS2 的 214 个氨基酸序列是通过“单次合成”产生的最长肽之一,即无需使用连接技术,通过一步逐步途径制成。圆二色性的 PyS2 生物物理特性与文献报道一致。荧光标记的 PyS2 与表达同源铁菌红素受体的 结合,并被摄取到周质空间。这种选择性摄取通过共聚焦和超分辨率显微镜、流式细胞术和光漂白后荧光恢复得到了验证。这些经过修饰的、合成的 S 型噬菌体结构域可用于探测 和的导入机制,并可用于开发绕过外膜的选择性抗菌剂。

相似文献

1
Rapid Single-Shot Synthesis of the 214 Amino Acid-Long N-Terminal Domain of Pyocin S2.
ACS Chem Biol. 2023 Mar 17;18(3):518-527. doi: 10.1021/acschembio.2c00862. Epub 2023 Feb 23.
3
Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa.
Biochem J. 2016 Aug 1;473(15):2345-58. doi: 10.1042/BCJ20160470. Epub 2016 Jun 1.
4
Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa.
Microbiology (Reading). 2014 Feb;160(Pt 2):261-269. doi: 10.1099/mic.0.070672-0. Epub 2013 Nov 11.
5
Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria.
Antimicrob Agents Chemother. 2019 May 24;63(6). doi: 10.1128/AAC.00342-19. Print 2019 Jun.
6
Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport.
mBio. 2020 Mar 10;11(2):e03230-19. doi: 10.1128/mBio.03230-19.
7
[Functional synergism of pyoverdine and the S-type pyocins of ].
Sheng Wu Gong Cheng Xue Bao. 2023 Apr 25;39(4):1562-1577. doi: 10.13345/j.cjb.220608.
8
A Colicin M-Type Bacteriocin from Pseudomonas aeruginosa Targeting the HxuC Heme Receptor Requires a Novel Immunity Partner.
Appl Environ Microbiol. 2018 Aug 31;84(18). doi: 10.1128/AEM.00716-18. Print 2018 Sep 15.
10
Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor.
J Bacteriol. 2007 Nov;189(21):7663-8. doi: 10.1128/JB.00992-07. Epub 2007 Aug 24.

引用本文的文献

1
Rapid Generation of Hypervariable Chemical Libraries.
Chem. 2025 Apr 4. doi: 10.1016/j.chempr.2025.102501.
2
Tetrahydropyranyl Backbone Protection for Enhanced Fmoc Solid-Phase Peptide Synthesis.
Chemistry. 2025 Aug 13;31(45):e01510. doi: 10.1002/chem.202501510. Epub 2025 Jul 29.
3
Backbone Protecting Groups for Enhanced Peptide and Protein Synthesis.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202509939. doi: 10.1002/anie.202509939. Epub 2025 Jul 16.
4
Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis.
J Am Chem Soc. 2025 Feb 5;147(5):4188-4197. doi: 10.1021/jacs.4c13832. Epub 2025 Jan 22.
5
A Versatile "Synthesis Tag" (SynTag) for the Chemical Synthesis of Aggregating Peptides and Proteins.
J Am Chem Soc. 2024 Dec 18;146(50):34887-34899. doi: 10.1021/jacs.4c14247. Epub 2024 Dec 5.
6
Rapid flow-based synthesis of post-translationally modified peptides and proteins: a case study on MYC's transactivation domain.
Chem Sci. 2024 May 7;15(23):8756-8765. doi: 10.1039/d4sc00481g. eCollection 2024 Jun 12.
7
Merging Flow Synthesis and Enzymatic Maturation to Expand the Chemical Space of Lasso Peptides.
J Am Chem Soc. 2024 Jun 26;146(25):17261-17269. doi: 10.1021/jacs.4c03898. Epub 2024 May 17.

本文引用的文献

1
Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase.
Nat Biotechnol. 2021 Dec;39(12):1548-1555. doi: 10.1038/s41587-021-00969-6. Epub 2021 Jul 29.
2
The therapeutic potential of bacteriocins as protein antibiotics.
Emerg Top Life Sci. 2017 Apr 21;1(1):65-74. doi: 10.1042/ETLS20160016.
3
Deep Learning for Prediction and Optimization of Fast-Flow Peptide Synthesis.
ACS Cent Sci. 2020 Dec 23;6(12):2277-2286. doi: 10.1021/acscentsci.0c00979. Epub 2020 Nov 12.
4
Chemical Protein Synthesis: Advances, Challenges, and Outlooks.
J Am Chem Soc. 2020 Nov 19. doi: 10.1021/jacs.0c09664.
5
Novel therapeutic strategies for treating infection.
Expert Opin Drug Discov. 2020 Dec;15(12):1403-1423. doi: 10.1080/17460441.2020.1803274. Epub 2020 Sep 3.
6
Synthesis of proteins by automated flow chemistry.
Science. 2020 May 29;368(6494):980-987. doi: 10.1126/science.abb2491.
7
Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides.
Front Bioeng Biotechnol. 2020 Mar 4;8:162. doi: 10.3389/fbioe.2020.00162. eCollection 2020.
8
Total Chemical Synthesis of ISGylated-Ubiquitin Hybrid Chain Assisted by Acetamidomethyl Derivatives with Dual Functions.
Bioconjug Chem. 2020 Mar 18;31(3):889-894. doi: 10.1021/acs.bioconjchem.0c00026. Epub 2020 Feb 24.
9
Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor.
Chem Commun (Camb). 2019 Dec 3;55(97):14598-14601. doi: 10.1039/c9cc08421e.
10
Pyoverdine-Dependent Virulence of Isolates From Cystic Fibrosis Patients.
Front Microbiol. 2019 Sep 6;10:2048. doi: 10.3389/fmicb.2019.02048. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验