Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.
Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
J Am Chem Soc. 2023 Mar 8;145(9):5083-5091. doi: 10.1021/jacs.2c10838. Epub 2023 Feb 23.
Triterpenoids possess potent biological activities, but their polycyclic skeletons are challenging to synthesize. The skeletal diversity of triterpenoids in plants is generated by oxidosqualene cyclases based on epoxide-triggered cationic rearrangement cascades. Normally, triterpenoid skeletons then remain unaltered during subsequent tailoring steps. In contrast, the highly modified triterpenoids found in Sapindales plants imply the existence of post-cyclization skeletal rearrangement enzymes that have not yet been found. We report here a biosynthetic pathway in Sapindales plants for the modification of already cyclized tirucallane triterpenoids, controlling the pathway bifurcation between different plant triterpenoid classes. Using a combination of bioinformatics, heterologous expression in plants and chemical analyses, we identified a cytochrome P450 monooxygenase and two isomerases which harness the epoxidation-rearrangement biosynthetic logic of triterpene cyclizations for modifying the tirucallane scaffold. The two isomerases share the same epoxide substrate made by the cytochrome P450 monooxygenase CYP88A154, but generate two different rearrangement products, one containing a cyclopropane ring. Our findings reveal a process for skeletal rearrangements of triterpenoids in nature that expands their scaffold diversity after the initial cyclization. In addition, the enzymes described here are crucial for the biotechnological production of limonoid, quassinoid, apoprotolimonoid, and glabretane triterpenoids.
三萜类化合物具有很强的生物活性,但它们的多环骨架很难合成。植物中三萜类化合物的骨架多样性是由角鲨烯环化酶产生的,基于环氧化物触发的阳离子重排级联。通常情况下,三萜类化合物的骨架在随后的修饰步骤中保持不变。相比之下,在金虎尾目植物中发现的高度修饰的三萜类化合物暗示存在尚未发现的环化后骨架重排酶。我们在这里报告了金虎尾目植物中已环化的羽扇烷三萜类化合物的修饰生物合成途径,控制了不同植物三萜类化合物类别的途径分支。我们使用生物信息学、在植物中的异源表达和化学分析的组合,鉴定了一种细胞色素 P450 单加氧酶和两种异构酶,它们利用三萜类化合物环化的氧化重排生物合成逻辑来修饰羽扇烷支架。这两种异构酶共享细胞色素 P450 单加氧酶 CYP88A154 产生的相同环氧化物底物,但生成两种不同的重排产物,其中一种含有一个环丙烷环。我们的发现揭示了自然界中三萜类化合物骨架重排的过程,在初始环化后扩展了它们的支架多样性。此外,这里描述的酶对于生物技术生产柠檬苦素、奎宁酸、阿朴普罗替莫烷和格拉布雷烷三萜类化合物至关重要。