Suppr超能文献

从大戟科伽蓝菜属植物中克隆和鉴定角鲨烯环化酶:催化多达 10 步重排反应生成菜棕和其他三萜的酶。

Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids.

机构信息

Department of Botany and Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.

出版信息

J Biol Chem. 2010 Sep 24;285(39):29703-12. doi: 10.1074/jbc.M109.098871. Epub 2010 Jul 7.

Abstract

The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C(30)H(50)O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761-779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores.

摘要

三萜类生物合成的第一步是角鲨烯环氧化合物转化为多环醇或酮 C(30)H(50)O。它是由单氧化鲨烯环化酶(OSC)催化的,该酶可以进行不同数量的碳正离子重排,从而生成具有不同碳骨架的三萜类化合物。已经从不同植物物种中克隆和鉴定了 OSCs,其中大多数催化相对较少的重排步骤。最近预测,必须存在特殊的 OSCs,才能形成具有最大可能重排步骤的五环三萜类化合物——friedelin。因此,本研究的目的是从大戟属植物 Kalanchoe daigremontiana 中克隆 friedelin 合酶,该植物物种在其叶表面蜡中积累这种三萜类化合物。分离出了 5 个 OSC cDNA,编码具有 761-779 个氨基酸的蛋白质,核苷酸序列同一性在 57.4-94.3%之间。在酵母中的异源表达和 GC-MS 分析表明,其中一种 OSC 产生了甾体角鲨烯,同时还有少量的副产物,而其他四种酶则产生了以 lupanol(93%)、taraxerol(60%)、glutinol(66%)和 friedelin(71%)为主的五环三萜混合物。角鲨烯合酶在所有叶片组织中均有表达,而 lupanol、taraxerol、glutinol 和 friedelin 合酶仅在叶片上下表面的表皮层中表达。因此,可以得出结论,这些酶的功能是形成各自的三萜类糖苷配基,用于覆盖叶片外部,可能作为防御化合物,抵御病原体或草食动物。

相似文献

引用本文的文献

5
The Biosynthesis and Medicinal Properties of Taraxerol.蒲公英赛醇的生物合成与药用特性
Biomedicines. 2022 Mar 30;10(4):807. doi: 10.3390/biomedicines10040807.
7
Ginsenosides in genus and their biosynthesis.人参属中的人参皂苷及其生物合成。
Acta Pharm Sin B. 2021 Jul;11(7):1813-1834. doi: 10.1016/j.apsb.2020.12.017. Epub 2021 Jan 2.

本文引用的文献

6
Biosynthetic diversity in plant triterpene cyclization.植物三萜环化反应中的生物合成多样性
Curr Opin Plant Biol. 2006 Jun;9(3):305-14. doi: 10.1016/j.pbi.2006.03.004. Epub 2006 Apr 3.
10
Genome mining to identify new plant triterpenoids.
J Am Chem Soc. 2004 May 12;126(18):5678-9. doi: 10.1021/ja0318784.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验