Ma Suze, Mandalapu Dhanaraju, Wang Shu, Zhang Qi
Department of Chemistry, Fudan University, Shanghai, 200433, China.
Nat Prod Rep. 2022 May 26;39(5):926-945. doi: 10.1039/d1np00065a.
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (, cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
2012年至2021年
由于其独特的结构和化学性质,环丙烷在合成化学、药物化学及化学生物学领域引起了广泛关注。这种结构基序在天然产物中广泛存在,并且通常对生物活性至关重要。自然界已经进化出多种策略来获得这种结构基序,在过去二十年中,人们对形成环丙烷的酶(即环丙烷化酶)的了解也越来越多。在此,总结了过去二十年中与环丙烷生物合成相关的科学文献,并根据反应机制对酶促环丙烷化反应进行了讨论,根据反应是否涉及来自S-腺苷甲硫氨酸(SAM)的外源C1单元,酶促环丙烷化反应可分为两条主要途径。这些反应还可以根据环丙烷形成之前所需的关键中间体进一步分类,这些中间体可以是碳正离子、碳负离子或碳自由基。除了含环丙烷天然产物的一般生物合成途径外,还特别强调了形成这种独特结构基序所需酶的作用机制和工程改造。