Suppr超能文献

通过分子设计策略工程化单原子 Zn 的第一配位壳,以实现高性能钠离子混合电容器。

Engineering the First Coordination Shell of Single Zn Atoms via Molecular Design Strategy toward High-Performance Sodium-Ion Hybrid Capacitors.

机构信息

Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.

出版信息

Small. 2023 May;19(21):e2300556. doi: 10.1002/smll.202300556. Epub 2023 Feb 23.

Abstract

Atomically dispersed Zn moieties are efficient active sites for accelerating the electrode kinetics of carbons for sodium-ion hybrid capacitors (SIHCs), but the low utilization and symmetric configuration of Zn single-atom greatly hamper the Na ion storage capability. Herein, a molecular design strategy is employed to synthesize high-density Zn single atoms with asymmetric Zn-N S coordination embedded in nitrogen/sulfur codoped carbon (Zn-N S-NSC). The key to this strategy lies in the Zn power-catalyzed condensation of trithiocyanuric acid molecules to generate S-doped g-C N , which can in situ coordinate with Zn sources to form Zn-N S moieties during pyrolysis. By virtue of the highly exposed Zn-N S moieties, Zn-N S-NSC presents ultrahigh reactivity, efficient electron transfer, and decreased ion diffusion barriers for SIHCs, rendering an impressive energy density of 215 Wh kg and a maximum power density of 15625 W kg . Moreover, the pouch cell displays a high capacity of 279 mAh g after 4000 cycles. This work provides a new avenue for the regulation of the coordination configuration of single metal atoms in carbons toward high-performance electrochemical energy technologies at the molecular level.

摘要

原子分散的 Zn 部分是加速钠离子混合电容器 (SIHC) 中碳的电极动力学的高效活性位点,但 Zn 单原子的低利用率和对称结构极大地阻碍了 Na 离子的存储能力。本文采用分子设计策略,合成了高密度的 Zn 单原子,其具有嵌入氮/硫共掺杂碳 (Zn-N S-NSC) 中的不对称 Zn-N S 配位。该策略的关键在于 Zn 功率催化缩合三硫氰酸分子生成 S 掺杂的 g-C3N4,它可以在热解过程中与 Zn 源原位配位形成 Zn-N S 部分。由于高度暴露的 Zn-N S 部分,Zn-N S-NSC 表现出超高的反应性、高效的电子转移和降低的 SIHC 离子扩散障碍,提供了令人印象深刻的 215 Wh kg 的能量密度和 15625 W kg 的最大功率密度。此外,袋式电池在 4000 次循环后显示出 279 mAh g 的高容量。这项工作为在分子水平上调控碳中单金属原子的配位构型以实现高性能电化学能源技术提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验