Suppr超能文献

消除碳质电极的微孔限制效应以提升锌离子存储能力

Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Zn-Ion Storage Capability.

作者信息

Wang Li, Peng Mengke, Chen Jierui, Hu Ting, Yuan Kai, Chen Yiwang

机构信息

College of Chemistry and Chemical Engineering, Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, 330031, China.

School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China.

出版信息

Adv Mater. 2022 Sep;34(39):e2203744. doi: 10.1002/adma.202203744. Epub 2022 Aug 26.

Abstract

Zinc-ion capacitors (ZICs) are promising technology for large-scale energy storage by integrating the attributes of supercapacitors and zinc-ion batteries. Unfortunately, the insufficient Zn -storage active sites of carbonaceous cathode materials and the mismatch of pore sizes with charge carriers lead to unsatisfactory Zn storage capability. Herein, new insights for boosting Zn storage capability of activated nitrogen-doped hierarchical porous carbon materials (ANHPC-x) are reported by effectively eliminating the micropore confinement effect and synchronously elevating the utilization of active sites. Therefore, the best-performed ANHPC-2 delivers impressive electrochemical properties for ZICs in terms of excellent capacity (199.1 mAh g ), energy density (155.2 Wh kg ), and durability (65 000 cycles). Systematic ex situ characterizations together with in situ electrochemical quartz crystal microbalance and Raman spectra measurements reveal that the remarkable electrochemical performance is assigned to the synergism of the Zn , H , and SO co-adsorption mechanism and reversible chemical adsorption. Furthermore, the ANHPC-2-based quasi-solid-state ZIC demonstrates excellent electrochemical capability with an ultralong lifespan of up to 100 000 cycles. This work not only provides a promising strategy to improve the Zn storage capability of carbonaceous materials but also sheds lights on charge-storage mechanism and advanced electrode materials' design for ZICs toward practical applications.

摘要

锌离子电容器(ZICs)通过整合超级电容器和锌离子电池的特性,是大规模储能的一项很有前景的技术。不幸的是,碳质阴极材料的锌存储活性位点不足以及孔径与电荷载流子的不匹配导致锌存储能力不尽人意。在此,通过有效消除微孔限制效应并同步提高活性位点的利用率,报道了提高活性氮掺杂分级多孔碳材料(ANHPC-x)锌存储能力的新见解。因此,性能最佳的ANHPC-2在容量(199.1 mAh g)、能量密度(155.2 Wh kg)和耐久性(65000次循环)方面为ZICs提供了令人印象深刻的电化学性能。系统的非原位表征以及原位电化学石英晶体微天平与拉曼光谱测量表明,卓越的电化学性能归因于Zn⁺、H⁺和SO₄²⁻共吸附机制与可逆化学吸附的协同作用。此外,基于ANHPC-2的准固态ZIC展示了出色的电化学性能,具有长达100000次循环的超长寿命。这项工作不仅为提高碳质材料的锌存储能力提供了一种很有前景的策略,也为ZICs面向实际应用的电荷存储机制和先进电极材料设计提供了启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验