Suppr超能文献

多目标散射成像的斑噪自相关分离。

Speckle autocorrelation separation for multi-target scattering imaging.

出版信息

Opt Express. 2023 Feb 13;31(4):6529-6539. doi: 10.1364/OE.479943.

Abstract

Imaging through scattering media remains a big challenge in optics while the single-shot non-invasive speckle autocorrelation technique (SAT) is well-known as a promising way to handle it. However, it usually cannot recover a large-scale target or multiple isolated small ones due to the limited effective range of the optical memory effect (OME). In this paper, we propose a multi-target scattering imaging scheme by combining the traditional SA algorithm with a Deep Learning (DL) strategy. The basic idea is to extract each autocorrelation component of every target from the autocorrelation result of a mixed speckle using a suitable DL method. Once we get all the expected autocorrelation components, a typical phase retrieval algorithm (PRA) could be applied to reveal the shapes of all those corresponding small targets. In our experimental demonstration, up to five isolated targets are successfully recovered.

摘要

通过散射介质进行成像仍然是光学领域的一个重大挑战,而单次非侵入式散斑自相关技术 (SAT) 被认为是一种很有前途的解决方案。然而,由于光记忆效应 (OME) 的有效范围有限,它通常无法恢复大目标或多个孤立的小目标。在本文中,我们提出了一种通过将传统的 SA 算法与深度学习 (DL) 策略相结合来实现多目标散射成像的方案。基本思想是使用合适的 DL 方法从混合散斑的自相关结果中提取每个目标的每个自相关分量。一旦我们得到所有预期的自相关分量,就可以应用典型的相位恢复算法 (PRA) 来揭示所有对应小目标的形状。在我们的实验演示中,成功恢复了多达五个孤立的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验