Hasan Md Rabiul, Hellesø Olav Gaute
Opt Express. 2023 Feb 13;31(4):6782-6795. doi: 10.1364/OE.473064.
Optical trapping combined with Raman spectroscopy have opened new possibilities for analyzing biological nanoparticles. Conventional optical tweezers have proven successful for trapping of a single or a few particles. However, the method is slow and cannot be used for the smallest particles. Thus, it is not adapted to analyze a large number of nanoparticles, which is necessary to get statistically valid data. Here, we propose quasi-bound states in the continuum (quasi-BICs) in a silicon nitride (SiN) metasurface to trap smaller particles and many simultaneously. The quasi-BIC metasurface contains multiple zones with high field-enhancement ('hotspots') at a wavelength of 785 nm, where a single nanoparticle can be trapped at each hotspot. We numerically investigate the optical trapping of a type of biological nanoparticles, namely extracellular vesicles (EVs), and study how their presence influences the resonance behavior of the quasi-BIC. It is found that perturbation theory and a semi-analytical expression give good estimates for the resonance wavelength and minimum of the potential well, as a function of the particle radius. This wavelength is slightly shifted relative to the resonance of the metasurface without trapped particles. The simulations show that the Q-factor can be increased by using a thin metasurface. The thickness of the layer and the asymmetry of the unit cell can thus be used to get a high Q-factor. Our findings show the tight fabrication tolerances necessary to make the metasurface. If these can be overcome, the proposed metasurface can be used for a lab-on-a-chip for mass-analysis of biological nanoparticles.
光学捕获与拉曼光谱相结合为分析生物纳米颗粒开辟了新的可能性。传统的光镊已被证明在捕获单个或少数颗粒方面是成功的。然而,该方法速度较慢,且不能用于捕获最小的颗粒。因此,它不适用于分析大量纳米颗粒,而这对于获得具有统计有效性的数据是必要的。在这里,我们提出在氮化硅(SiN)超表面中的连续统中的准束缚态(quasi-BICs),以同时捕获更小的颗粒和多个颗粒。准BIC超表面在785 nm波长处包含多个具有高场增强(“热点”)的区域,每个热点可捕获单个纳米颗粒。我们对一种生物纳米颗粒,即细胞外囊泡(EVs)的光学捕获进行了数值研究,并研究了它们的存在如何影响准BIC的共振行为。结果发现,微扰理论和一个半解析表达式能够很好地估计共振波长和势阱最小值与颗粒半径的函数关系。该波长相对于未捕获颗粒的超表面共振略有偏移。模拟表明,使用薄的超表面可以提高品质因数。因此,可以利用层的厚度和单位晶胞的不对称性来获得高的品质因数。我们的研究结果表明制造超表面所需的严格制造公差。如果能够克服这些问题,所提出的超表面可用于用于生物纳米颗粒质量分析的芯片实验室。