Suppr超能文献

正则化对抗学习用于多批次无靶代谢组学数据的归一化。

Regularized adversarial learning for normalization of multi-batch untargeted metabolomics data.

机构信息

ETH Zürich, Institute of Molecular Systems Biology, Zürich 8093, Switzerland.

Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland.

出版信息

Bioinformatics. 2023 Mar 1;39(3). doi: 10.1093/bioinformatics/btad096.

Abstract

MOTIVATION

Untargeted metabolomics by mass spectrometry is the method of choice for unbiased analysis of molecules in complex samples of biological, clinical or environmental relevance. The exceptional versatility and sensitivity of modern high-resolution instruments allows profiling of thousands of known and unknown molecules in parallel. Inter-batch differences constitute a common and unresolved problem in untargeted metabolomics, and hinder the analysis of multi-batch studies or the intercomparison of experiments.

RESULTS

We present a new method, Regularized Adversarial Learning Preserving Similarity (RALPS), for the normalization of multi-batch untargeted metabolomics data. RALPS builds on deep adversarial learning with a three-term loss function that mitigates batch effects while preserving biological identity, spectral properties and coefficients of variation. Using two large metabolomics datasets, we showcase the superior performance of RALPS as compared with six state-of-the-art methods for batch correction. Further, we demonstrate that RALPS scales well, is robust, deals with missing values and can handle different experimental designs.

AVAILABILITY AND IMPLEMENTATION

https://github.com/zamboni-lab/RALPS.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

通过质谱进行无靶向代谢组学是分析生物、临床或环境相关复杂样本中分子的首选方法。现代高分辨率仪器具有出色的多功能性和灵敏度,可同时对数千种已知和未知分子进行分析。批次间差异是无靶向代谢组学中一个常见且未解决的问题,阻碍了多批次研究的分析或实验的相互比较。

结果

我们提出了一种新的方法,正则化对抗学习保留相似性(RALPS),用于归一化多批无靶向代谢组学数据。RALPS 基于深度对抗学习,使用三部分损失函数,在减轻批次效应的同时保留生物学身份、光谱特性和变异系数。使用两个大型代谢组学数据集,我们展示了 RALPS 与六种最先进的批处理校正方法相比的优越性能。此外,我们还证明 RALPS 具有良好的扩展性、鲁棒性、可处理缺失值并可处理不同的实验设计。

可用性和实现

https://github.com/zamboni-lab/RALPS。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a04/9978579/1551490096b0/btad096f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验