Department of Urology, Medical University of Vienna, 1090 Vienna, Austria.
Department of Urology and Andrology, University Hospital Krems, 3500 Krems, Austria.
Curr Oncol. 2023 Jan 30;30(2):1683-1691. doi: 10.3390/curroncol30020129.
To investigate if imaging biomarkers derived from 3-Tesla dual-tracer [(18)F]fluoromethylcholine (FMC) and [Ga]Ga-PSMA conjugate 11 (PSMA)-positron emission tomography can adequately predict clinically significant prostate cancer (csPC).
We assessed 77 biopsy-proven PC patients who underwent 3T dual-tracer PET/mpMRI followed by radical prostatectomy (RP) between 2014 and 2017. We performed a retrospective lesion-based analysis of all cancer foci and compared it to whole-mount histopathology of the RP specimen. The primary aim was to investigate the pretherapeutic role of the imaging biomarkers FMC- and PSMA-maximum standardized uptake values (SUVmax) for the prediction of csPC and to compare it to the mpMRI-methods and PI-RADS score.
Overall, we identified 104 cancer foci, 69 were clinically significant (66.3%) and 35 were clinically insignificant (33.7%). We found that the combined FMC+PSMA SUVmax were the only significant parameters ( < 0.001 and = 0.049) for the prediction of csPC. ROC analysis showed an AUC for the prediction of csPC of 0.695 for PI-RADS scoring (95% CI 0.591 to 0.786), 0.792 for FMC SUVmax (95% CI 0.696 to 0.869), 0.852 for FMC+PSMA SUVmax (95% CI 0.764 to 0.917), and 0.852 for the multivariable CHAID model (95% CI 0.763 to 0.916). Comparing the AUCs, we found that FMC+PSMA SUVmax and the multivariable model were significantly more accurate for the prediction of csPC compared to PI-RADS scoring ( = 0.0123, = 0.0253, respectively).
Combined FMC+PSMA SUVmax seems to be a reliable parameter for the prediction of csPC and might overcome the limitations of PI-RADS scoring. Further prospective studies are necessary to confirm these promising preliminary results.
研究来自 3T 双示踪剂[18F]氟甲基胆碱(FMC)和[Ga]Ga-PSMA 结合物 11(PSMA)-正电子发射断层扫描(PET)的成像生物标志物是否能够充分预测临床显著前列腺癌(csPC)。
我们评估了 2014 年至 2017 年间接受 3T 双示踪剂 PET/mpMRI 检查并随后接受根治性前列腺切除术(RP)的 77 例活检证实的 PC 患者。我们对所有癌症病灶进行了回顾性基于病灶的分析,并将其与 RP 标本的全载玻片组织病理学进行了比较。主要目的是研究治疗前 FMC 和 PSMA 最大标准化摄取值(SUVmax)等成像生物标志物在预测 csPC 中的作用,并将其与 mpMRI 方法和 PI-RADS 评分进行比较。
总体而言,我们共发现 104 个癌灶,69 个为临床显著(66.3%),35 个为临床不显著(33.7%)。我们发现,FMC+PSMA SUVmax 是唯一具有统计学意义的预测 csPC 的参数(<0.001 和=0.049)。ROC 分析显示,PI-RADS 评分预测 csPC 的 AUC 为 0.695(95%CI 0.591-0.786),FMC SUVmax 为 0.792(95%CI 0.696-0.869),FMC+PSMA SUVmax 为 0.852(95%CI 0.764-0.917),CHAID 多变量模型为 0.852(95%CI 0.763-0.916)。比较 AUC 发现,FMC+PSMA SUVmax 和多变量模型在预测 csPC 方面明显比 PI-RADS 评分更准确(=0.0123,=0.0253)。
FMC+PSMA SUVmax 似乎是预测 csPC 的可靠参数,可能克服了 PI-RADS 评分的局限性。需要进一步的前瞻性研究来证实这些有前途的初步结果。