Suppr超能文献

基于双示踪剂 PET-MRI 的影像生物标志物预测临床显著前列腺癌。

Dual-Tracer PET-MRI-Derived Imaging Biomarkers for Prediction of Clinically Significant Prostate Cancer.

机构信息

Department of Urology, Medical University of Vienna, 1090 Vienna, Austria.

Department of Urology and Andrology, University Hospital Krems, 3500 Krems, Austria.

出版信息

Curr Oncol. 2023 Jan 30;30(2):1683-1691. doi: 10.3390/curroncol30020129.

Abstract

PURPOSE

To investigate if imaging biomarkers derived from 3-Tesla dual-tracer [(18)F]fluoromethylcholine (FMC) and [Ga]Ga-PSMA conjugate 11 (PSMA)-positron emission tomography can adequately predict clinically significant prostate cancer (csPC).

METHODS

We assessed 77 biopsy-proven PC patients who underwent 3T dual-tracer PET/mpMRI followed by radical prostatectomy (RP) between 2014 and 2017. We performed a retrospective lesion-based analysis of all cancer foci and compared it to whole-mount histopathology of the RP specimen. The primary aim was to investigate the pretherapeutic role of the imaging biomarkers FMC- and PSMA-maximum standardized uptake values (SUVmax) for the prediction of csPC and to compare it to the mpMRI-methods and PI-RADS score.

RESULTS

Overall, we identified 104 cancer foci, 69 were clinically significant (66.3%) and 35 were clinically insignificant (33.7%). We found that the combined FMC+PSMA SUVmax were the only significant parameters ( < 0.001 and = 0.049) for the prediction of csPC. ROC analysis showed an AUC for the prediction of csPC of 0.695 for PI-RADS scoring (95% CI 0.591 to 0.786), 0.792 for FMC SUVmax (95% CI 0.696 to 0.869), 0.852 for FMC+PSMA SUVmax (95% CI 0.764 to 0.917), and 0.852 for the multivariable CHAID model (95% CI 0.763 to 0.916). Comparing the AUCs, we found that FMC+PSMA SUVmax and the multivariable model were significantly more accurate for the prediction of csPC compared to PI-RADS scoring ( = 0.0123, = 0.0253, respectively).

CONCLUSIONS

Combined FMC+PSMA SUVmax seems to be a reliable parameter for the prediction of csPC and might overcome the limitations of PI-RADS scoring. Further prospective studies are necessary to confirm these promising preliminary results.

摘要

目的

研究来自 3T 双示踪剂[18F]氟甲基胆碱(FMC)和[Ga]Ga-PSMA 结合物 11(PSMA)-正电子发射断层扫描(PET)的成像生物标志物是否能够充分预测临床显著前列腺癌(csPC)。

方法

我们评估了 2014 年至 2017 年间接受 3T 双示踪剂 PET/mpMRI 检查并随后接受根治性前列腺切除术(RP)的 77 例活检证实的 PC 患者。我们对所有癌症病灶进行了回顾性基于病灶的分析,并将其与 RP 标本的全载玻片组织病理学进行了比较。主要目的是研究治疗前 FMC 和 PSMA 最大标准化摄取值(SUVmax)等成像生物标志物在预测 csPC 中的作用,并将其与 mpMRI 方法和 PI-RADS 评分进行比较。

结果

总体而言,我们共发现 104 个癌灶,69 个为临床显著(66.3%),35 个为临床不显著(33.7%)。我们发现,FMC+PSMA SUVmax 是唯一具有统计学意义的预测 csPC 的参数(<0.001 和=0.049)。ROC 分析显示,PI-RADS 评分预测 csPC 的 AUC 为 0.695(95%CI 0.591-0.786),FMC SUVmax 为 0.792(95%CI 0.696-0.869),FMC+PSMA SUVmax 为 0.852(95%CI 0.764-0.917),CHAID 多变量模型为 0.852(95%CI 0.763-0.916)。比较 AUC 发现,FMC+PSMA SUVmax 和多变量模型在预测 csPC 方面明显比 PI-RADS 评分更准确(=0.0123,=0.0253)。

结论

FMC+PSMA SUVmax 似乎是预测 csPC 的可靠参数,可能克服了 PI-RADS 评分的局限性。需要进一步的前瞻性研究来证实这些有前途的初步结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9225/9954891/ffbcecbeef88/curroncol-30-00129-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验