Suppr超能文献

使用机器学习模型鉴定 TRPC6 作为 PM 诱导的慢性阻塞性肺疾病的新型诊断生物标志物。

Identification of TRPC6 as a Novel Diagnostic Biomarker of PM-Induced Chronic Obstructive Pulmonary Disease Using Machine Learning Models.

机构信息

Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

Department of Computer Engineering, College of Information Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

出版信息

Genes (Basel). 2023 Jan 21;14(2):284. doi: 10.3390/genes14020284.

Abstract

Chronic obstructive pulmonary disease (COPD) was the third most prevalent cause of mortality worldwide in 2010; it results from a progressive and fatal deterioration of lung function because of cigarette smoking and particulate matter (PM). Therefore, it is important to identify molecular biomarkers that can diagnose the COPD phenotype to plan therapeutic efficacy. To identify potential novel biomarkers of COPD, we first obtained COPD and the normal lung tissue gene expression dataset GSE151052 from the NCBI Gene Expression Omnibus (GEO). A total of 250 differentially expressed genes (DEGs) were investigated and analyzed using GEO2R, gene ontology (GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) identification. The GEO2R analysis revealed that TRPC6 was the sixth most highly expressed gene in patients with COPD. The GO analysis indicated that the upregulated DEGs were mainly concentrated in the plasma membrane, transcription, and DNA binding. The KEGG pathway analysis indicated that the upregulated DEGs were mainly involved in pathways related to cancer and axon guidance. TRPC6, one of the most abundant genes among the top 10 differentially expressed total RNAs (fold change ≥ 1.5) between the COPD and normal groups, was selected as a novel COPD biomarker based on the results of the GEO dataset and analysis using machine learning models. The upregulation of TRPC6 was verified in PM-stimulated RAW264.7 cells, which mimicked COPD conditions, compared to untreated RAW264.7 cells by a quantitative reverse transcription polymerase chain reaction. In conclusion, our study suggests that TRPC6 can be regarded as a potential novel biomarker for COPD pathogenesis.

摘要

慢性阻塞性肺疾病(COPD)是 2010 年全球第三大常见死因;它是由于吸烟和颗粒物(PM)导致的肺部功能进行性和致命性恶化所致。因此,识别可以诊断 COPD 表型以规划治疗效果的分子生物标志物非常重要。为了确定 COPD 的潜在新型生物标志物,我们首先从 NCBI 基因表达综合数据库(GEO)中获得了 COPD 和正常肺组织基因表达数据集 GSE151052。使用 GEO2R、基因本体(GO)功能注释和京都基因与基因组百科全书(KEGG)鉴定,对总共 250 个差异表达基因(DEGs)进行了调查和分析。GEO2R 分析表明,TRPC6 是 COPD 患者中表达水平第六高的基因。GO 分析表明,上调的 DEGs 主要集中在质膜、转录和 DNA 结合。KEGG 途径分析表明,上调的 DEGs 主要涉及与癌症和轴突导向相关的途径。TRPC6 是 COPD 组和正常组之间差异表达总 RNA 中最丰富的基因之一(倍数变化≥1.5),基于 GEO 数据集的结果和使用机器学习模型的分析,被选为新型 COPD 生物标志物。与未经处理的 RAW264.7 细胞相比,PM 刺激的 RAW264.7 细胞中 TRPC6 的上调通过定量逆转录聚合酶链反应得到验证,这些细胞模拟了 COPD 条件。总之,我们的研究表明,TRPC6 可以被视为 COPD 发病机制的潜在新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2604/9957274/672c16d1ce85/genes-14-00284-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验