文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

补充氮素对薄荷的形态、生化、产量及品质特性具有调节作用。

Nitrogen Supplementation Modulates Morphological, Biochemical, Yield and Quality Attributes of Peppermint.

作者信息

Parrey Zubair Ahmad, Shah Sajad Hussain, Fayaz Mudasir, Casini Ryan, Elansary Hosam O, Mohammad Firoz

机构信息

Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.

Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.

出版信息

Plants (Basel). 2023 Feb 10;12(4):809. doi: 10.3390/plants12040809.


DOI:10.3390/plants12040809
PMID:36840157
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9962011/
Abstract

Due to the rising demand for essential oil in the world market, peppermint has gained an important status among aromatic and medicinal plants. It becomes imperative to optimize its performance in terms of the growth, physiological functioning and biosynthesis of specialized metabolites. A factorial randomized pot experiment was performed using three peppermint cultivars (Kukrail, Pranjal and Tushar) and five levels of leaf-applied nitrogen (N), viz. 0 (control), 0.5, 1.0, 1.5 and 2%. The phenological features, biochemical parameters, viability of root cells, stomatal and trichome behavior were assessed at 100 days after transplanting (DAT). The yield-related parameters, viz., herbage yield, essential oil content, menthol content and yield were studied at 120 DAT. The results revealed that increasing the N doses up to 1.5% enhanced all the studied parameters of peppermint, which thereafter (at the dose above 1.5% N) decreased. The variation pattern of the studied parameters was "low-high-low". Cultivar Kukrail surpassed the two other cultivars Tushar and Pranjal. Among the foliar sprays, the application of 1.5% N increased chlorophyll content and net photosynthetic rate in all three cultivars. Moreover, the essential oil (EO), EO yield and menthol yield of the plant were also increased linearly in all three cultivars as compared with their control plants. Nitrogen application enhanced the trichome size and density of the plants, as revealed through scanning electron microscopy. Furthermore, from the GC-MS studies, the EO content in the studied cultivars increased, particularly in the case of menthol, with the N application. It may be concluded that two sprays of N (1.5%) at appropriate growth stages could be beneficial for improving morphological, physio biochemical and yield attributes of peppermint.

摘要

由于世界市场对精油的需求不断增加,薄荷在芳香植物和药用植物中获得了重要地位。在薄荷的生长、生理功能和特殊代谢产物的生物合成方面优化其性能变得势在必行。采用三个薄荷品种(库克拉尔、普兰贾尔和图沙尔)和五个叶面施氮水平(即0(对照)、0.5%、1.0%、1.5%和2%)进行了析因随机盆栽试验。在移栽后100天(DAT)评估物候特征、生化参数、根细胞活力、气孔和毛状体行为。在移栽后120天研究了与产量相关的参数,即牧草产量、精油含量、薄荷醇含量和产量。结果表明,将氮剂量增加到1.5%可提高薄荷所有研究参数,此后(在氮剂量高于1.5%时)这些参数下降。研究参数的变化模式为“低-高-低”。库克拉尔品种超过了其他两个品种图沙尔和普兰贾尔。在叶面喷施中,施用1.5%的氮增加了所有三个品种的叶绿素含量和净光合速率。此外,与对照植株相比,所有三个品种的植物精油(EO)、精油产量和薄荷醇产量也呈线性增加。通过扫描电子显微镜观察发现,施氮提高了植物的毛状体大小和密度。此外,从气相色谱-质谱研究来看,随着氮的施用,所研究品种中的精油含量增加,尤其是薄荷醇的情况。可以得出结论,在适当的生长阶段分两次喷施1.5%的氮可能有利于改善薄荷的形态、生理生化和产量特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/f80cce412b9b/plants-12-00809-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/78515b03df75/plants-12-00809-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/e5f99626726e/plants-12-00809-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/143c9159221b/plants-12-00809-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/057918e56e76/plants-12-00809-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/5aa670bb4761/plants-12-00809-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/f2eb8014c968/plants-12-00809-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/4c9b03eae5b7/plants-12-00809-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/38e8586ae86f/plants-12-00809-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/e473617e1007/plants-12-00809-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/6dc5fe2cbdbd/plants-12-00809-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/84889f09bad9/plants-12-00809-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/5d447fe9523b/plants-12-00809-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/2dbaa7615e0e/plants-12-00809-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/c874bda7654d/plants-12-00809-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/4d352b53da58/plants-12-00809-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/4e21e43c5843/plants-12-00809-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/f80cce412b9b/plants-12-00809-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/78515b03df75/plants-12-00809-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/e5f99626726e/plants-12-00809-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/143c9159221b/plants-12-00809-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/057918e56e76/plants-12-00809-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/5aa670bb4761/plants-12-00809-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/f2eb8014c968/plants-12-00809-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/4c9b03eae5b7/plants-12-00809-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/38e8586ae86f/plants-12-00809-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/e473617e1007/plants-12-00809-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/6dc5fe2cbdbd/plants-12-00809-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/84889f09bad9/plants-12-00809-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/5d447fe9523b/plants-12-00809-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/2dbaa7615e0e/plants-12-00809-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/c874bda7654d/plants-12-00809-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/4d352b53da58/plants-12-00809-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/4e21e43c5843/plants-12-00809-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1153/9962011/f80cce412b9b/plants-12-00809-g017.jpg

相似文献

[1]
Nitrogen Supplementation Modulates Morphological, Biochemical, Yield and Quality Attributes of Peppermint.

Plants (Basel). 2023-2-10

[2]
Exogenous epibrassinolide application improves essential oil biosynthesis and trichome development in peppermint via modulating growth and physicochemical processes.

Sci Rep. 2023-8-9

[3]
Optimizing Antioxidant Activity and Phytochemical Properties of Peppermint ( L.) by Integrative Application of Biofertilizer and Stress-Modulating Nanoparticles under Drought Stress Conditions.

Plants (Basel). 2022-12-28

[4]
Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality.

Ecotoxicol Environ Saf. 2018-4-24

[5]
Physio-biochemical, agronomical, and gene expression analysis reveals different responsive approach to low nitrogen in contrasting rice cultivars for nitrogen use efficiency.

Mol Biol Rep. 2023-2

[6]
Nanotized kinetin enhances essential oil yield and active constituents of mint via improvement in physiological attributes.

Chemosphere. 2022-2

[7]
Effects of Green Manures (in the Form of Monoculture and Intercropping), Biofertilizer and Organic Manure on the Productivity and Phytochemical Properties of Peppermint ( L.).

Plants (Basel). 2022-11-1

[8]
Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal.

J Hazard Mater. 2023-3-15

[9]
Omeprazole alleviates water stress in peppermint and modulates the expression of menthol biosynthesis genes.

Plant Physiol Biochem. 2019-4-17

[10]
Inducing the Production of Secondary Metabolites by Foliar Application of Methyl Jasmonate in Peppermint.

Plants (Basel). 2023-6-16

引用本文的文献

[1]
Exogenous epibrassinolide application improves essential oil biosynthesis and trichome development in peppermint via modulating growth and physicochemical processes.

Sci Rep. 2023-8-9

本文引用的文献

[1]
Cytokinin-regulated targets of Cytokinin Response Factor 6 are involved in potassium transport.

Plant Direct. 2020-12-8

[2]
Nitrogen and Sulfur Fertilization Modulates the Yield, Essential Oil and Quality Traits of Wild Marigold ( L.) in the Western Himalaya.

Front Plant Sci. 2021-1-18

[3]
Effect of Different Rates of Nitrogen Fertilization on Crop Yield, Soil Properties and Leaf Physiological Attributes in Banana Under Subtropical Regions of China.

Front Plant Sci. 2020-12-21

[4]
The physiological response of photosynthesis to nitrogen deficiency.

Plant Physiol Biochem. 2021-1

[5]
The function of high-affinity urea transporters in nitrogen-deficient conditions.

Physiol Plant. 2021-4

[6]
Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency.

Biol Res. 2020-10-16

[7]
Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint ( L.).

Physiol Mol Biol Plants. 2020-1

[8]
The impact of peppermint oil on the irritable bowel syndrome: a meta-analysis of the pooled clinical data.

BMC Complement Altern Med. 2019-1-17

[9]
Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications.

Plant Sci. 2018-6-19

[10]
Photosynthesis and nitrogen relationships in leaves of C plants.

Oecologia. 1989-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索