Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis Indiana.
Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill North Carolina.
Biophys J. 2023 Mar 21;122(6):1130-1139. doi: 10.1016/j.bpj.2023.02.024. Epub 2023 Feb 24.
Long-chain polyunsaturated fatty acids (PUFAs) are prone to nonenzymatic oxidation in response to differing environmental stressors and endogenous cellular sources. There is increasing evidence that phospholipids containing oxidized PUFA acyl chains control the inflammatory response. However, the underlying mechanism(s) of action by which oxidized PUFAs exert their functional effects remain unclear. Herein, we tested the hypothesis that replacement of 1-palmitoyl-2-arachidonyl-phosphatidylcholine (PAPC) with oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC) regulates membrane architecture. Specifically, with solid-state H NMR of biomimetic membranes, we investigated how substituting oxPAPC for PAPC modulates the molecular organization of liquid-ordered (L) domains. H NMR spectra for bilayer mixtures of 1,2-dipalmitoylphosphatidylcholine-d (an analog of DPPC deuterated throughout sn-1 and -2 chains) and cholesterol to which PAPC or oxPAPC was added revealed that replacing PAPC with oxPAPC disrupted molecular organization, indicating that oxPAPC does not mix favorably in a tightly packed L phase. Furthermore, unlike PAPC, adding oxPAPC stabilized 1,2-dipalmitoylphosphatidylcholine-d-rich/cholesterol-rich L domains formed in mixtures with 1,2-dioleoylphosphatidylcholine while decreasing the molecular order within 1,2-dioleoylphosphatidylcholine-rich liquid-disordered regions of the membrane. Collectively, these results suggest a mechanism in which oxPAPC stabilizes L domains-by disordering the surrounding liquid-disordered region. Changes in the structure, and thereby functionality, of L domains may underly regulation of plasma membrane-based inflammatory signaling by oxPAPC.
长链多不饱和脂肪酸(PUFA)容易在不同的环境应激源和内源性细胞来源的作用下发生非酶促氧化。越来越多的证据表明,含有氧化 PUFA 酰基链的磷脂控制着炎症反应。然而,氧化 PUFAs 发挥其功能作用的潜在机制尚不清楚。在此,我们检验了这样一个假设,即氧化 1-棕榈酰基-2-花生四烯酰基-磷脂酰胆碱(oxPAPC)取代 1-棕榈酰基-2-花生四烯酰基-磷脂酰胆碱(PAPC)可调节膜结构。具体来说,通过生物模拟膜的固态 H NMR,我们研究了用 oxPAPC 取代 PAPC 如何调节液体有序(L)区的分子组织。用 1,2-二棕榈酰基磷脂酰胆碱-d(DPPC 的全氘化类似物,sn-1 和 -2 链)和胆固醇的双层混合物的 H NMR 光谱研究了向其中添加 PAPC 或 oxPAPC 如何改变 L 相的分子组织,结果表明用 oxPAPC 取代 PAPC 会破坏分子组织,表明 oxPAPC 不能在紧密堆积的 L 相中很好地混合。此外,与 PAPC 不同,添加 oxPAPC 稳定了 1,2-二棕榈酰基磷脂酰胆碱-d/胆固醇丰富的 L 区在 1,2-二油酰基磷脂酰胆碱混合物中形成,同时降低了膜中 1,2-二油酰基磷脂酰胆碱丰富的液体无序区的分子有序性。总的来说,这些结果表明,oxPAPC 通过扰乱周围的液体无序区来稳定 L 区的机制。L 区结构的变化,从而影响其功能,可能是 oxPAPC 调节基于质膜的炎症信号的基础。