Nanophotonics Research Centre, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 518060, P. R. China.
Adv Sci (Weinh). 2023 Apr;10(12):e2205249. doi: 10.1002/advs.202205249. Epub 2023 Feb 25.
Photonic spin skyrmions with deep-subwavelength features have aroused considerable interest in recent years. However, the manipulation of spin structure in the skyrmions in a desired manner is still a challenge, while this is crucial for developing the skyrmion-based applications. Here, an approach of optical spin manipulation by utilizing the spin-momentum equation is proposed to investigate the spin texture in a photonic skyrmion-pair. With the benefit of the proposed approach, a unique spin texture with spin angular momentum varying linearly along the line connecting the two skyrmion centers is theoretically designed and experimentally verified. The optimized spin texture is then applied in a displacement-sensing system, which is capable of attaining pico-metric sensitivity. Compared with the conventional polarization and phase schemes, the spin-based manipulation mechanism provides a new pathway for optical modulation, which is of great value in nanophotonics from both fundamental and application.
近年来,具有深亚波长特征的光子自旋斯格明子引起了相当大的兴趣。然而,以期望的方式操纵斯格明子中的自旋结构仍然是一个挑战,而这对于开发基于斯格明子的应用至关重要。在这里,我们提出了一种利用自旋-动量方程进行光学自旋操控的方法,以研究光子斯格明子对中的自旋结构。利用所提出的方法,我们从理论上设计并实验验证了一种具有独特自旋结构的光子斯格明子对,其自旋角动量沿着连接两个斯格明子中心的线线性变化。然后,我们将优化后的自旋结构应用于位移传感系统中,该系统能够实现皮米级的灵敏度。与传统的偏振和相位方案相比,基于自旋的操控机制为光学调制提供了一条新途径,这对于从基础研究到应用研究的纳米光子学都具有重要价值。