Suppr超能文献

等离子体晶格中光的自旋 - 轨道相互作用

Spin-Orbit Interaction of Light in Plasmonic Lattices.

作者信息

Tsesses Shai, Cohen Kobi, Ostrovsky Evgeny, Gjonaj Bergin, Bartal Guy

机构信息

Andrew and Erna Viterbi Department of Electrical Engineering , Technion - Israel Institute of Technology , 3200003 Haifa , Israel.

Faculty of Medical Sciences , Albanian University , Durres St. , Tirana 1000 , Albania.

出版信息

Nano Lett. 2019 Jun 12;19(6):4010-4016. doi: 10.1021/acs.nanolett.9b01343. Epub 2019 May 10.

Abstract

In the past decade, the spin-orbit interaction (SOI) of light has been a driving force in the design of metamaterials, metasurfaces, and schemes for light-matter interaction. A hallmark of the spin-orbit interaction of light is the spin-based plasmonic effect, converting spin angular momentum of propagating light to near-field orbital angular momentum. Although this effect has been thoroughly investigated in circular symmetry, it has yet to be characterized in a noncircular geometry, where whirling, periodic plasmonic fields are expected. Using phase-resolved near-field microscopy, we experimentally demonstrate the SOI of circularly polarized light in nanostructures possessing dihedral symmetry. We show how interaction with hexagonal slits results in four topologically different plasmonic lattices, controlled by engineered boundary conditions, and reveal a cyclic nature of the spin-based plasmonic effect which does not exist for circular symmetry. Finally, we calculate the optical forces generated by the plasmonic lattices, predicting that light with mere spin angular momentum can exert torque on a multitude of particles in an ordered fashion to form an optical nanomotor array. Our findings may be of use in both biology and chemistry, as a means for simultaneous trapping, manipulation, and excitation of multiple objects, controlled by the polarization of light.

摘要

在过去十年中,光的自旋轨道相互作用(SOI)一直是超材料、超表面以及光与物质相互作用方案设计的驱动力。光的自旋轨道相互作用的一个标志是基于自旋的等离子体效应,即将传播光的自旋角动量转换为近场轨道角动量。尽管这种效应已在圆对称情况下得到充分研究,但在非圆几何结构中尚未得到表征,在这种结构中预计会出现旋转的周期性等离子体场。利用相分辨近场显微镜,我们通过实验证明了具有二面角对称性的纳米结构中圆偏振光的SOI。我们展示了与六边形狭缝的相互作用如何导致由工程边界条件控制的四种拓扑不同的等离子体晶格,并揭示了基于自旋的等离子体效应的循环性质,这在圆对称中是不存在的。最后,我们计算了等离子体晶格产生的光学力,预测仅具有自旋角动量的光可以以有序方式对大量粒子施加扭矩,从而形成光学纳米马达阵列。我们的发现可能在生物学和化学领域都有用,作为一种通过光的偏振同时捕获、操纵和激发多个物体的手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验